Home
Class 14
MATHS
Find the sum of (1 - (1)/(n + 1)) + (1 -...

Find the sum of `(1 - (1)/(n + 1)) + (1 - (2)/(n + 1)) + (1 - (3)/(n + 1))+......(1 - (n)/(n + 1))`

A

n

B

`(1)/(2)n`

C

(n + 1)

D

`(1)/(2) (n + 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the expression \[ (1 - \frac{1}{n + 1}) + (1 - \frac{2}{n + 1}) + (1 - \frac{3}{n + 1}) + \ldots + (1 - \frac{n}{n + 1}), \] we can simplify it step by step. ### Step 1: Rewrite the Expression We can rewrite the sum as follows: \[ \sum_{k=1}^{n} \left(1 - \frac{k}{n + 1}\right). \] This means we are summing the terms from \(k = 1\) to \(n\). ### Step 2: Separate the Terms Now, we can separate the sum into two parts: \[ \sum_{k=1}^{n} 1 - \sum_{k=1}^{n} \frac{k}{n + 1}. \] ### Step 3: Calculate the First Sum The first sum, \(\sum_{k=1}^{n} 1\), is simply \(n\) because we are adding 1 a total of \(n\) times. \[ \sum_{k=1}^{n} 1 = n. \] ### Step 4: Calculate the Second Sum For the second sum, we have: \[ \sum_{k=1}^{n} \frac{k}{n + 1} = \frac{1}{n + 1} \sum_{k=1}^{n} k. \] The sum of the first \(n\) natural numbers is given by the formula: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2}. \] Thus, substituting this into our expression gives: \[ \sum_{k=1}^{n} \frac{k}{n + 1} = \frac{1}{n + 1} \cdot \frac{n(n + 1)}{2} = \frac{n}{2}. \] ### Step 5: Combine the Results Now we can substitute back into our separated sums: \[ n - \frac{n}{2} = \frac{2n}{2} - \frac{n}{2} = \frac{n}{2}. \] ### Final Result Thus, the sum of the given expression is: \[ \frac{n}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the following. (1-(1)/(n))+(1-(2)/(n))+(1-(3)/(n))+... up to n terms.

lim_ (n rarr oo) ((1) / (n + 1) + (1) / (n + 2) + (1) / (n + 3) + ...... + (1) / (6n ))

sum_ (n = 1) ^ (oo) (1) / ((n + 1) (n + 2) (n + 3) ........ (n + k))

Find the sum of (1)/(1!(n-1)!)+(1)/(3!(n-3))+(1)/(5!(n-5))+

Find the value of ( 1 - 1/3 ) ( 1 - 1/4 ) ( 1 - 1/5 ) ---------- ( 1 - 1/n ) is ( a ) 2/n ( b ) 4/n ( c ) 3/n ( d ) 5/n

The sum S = lim_ (n rarr oo) [(1) / (n + 1) + (1) / (n + 2) + (1) / (n + 3) + ----- + (1) / (2n)]

Find lim_ (n rarr oo) [(n + 1) ^ (n + 1) * n ^ (- n-1) - (n + 1) * n ^ (- 1)]

Evaluate lim_ (n rarr oo) [(1+ (1) / (n)) 91+ (2) / (n)) .... (1+ (n) / (n))] ^ ((1) /(a))

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. Simplify [3 (1)/(4) div {1 (1)/(4) - (1)/(2) (2 (1)/(2) - bar((1)/(4) ...

    Text Solution

    |

  2. The value of (0.1 xx 0.1 xx 0.1 + 0.2 xx 0.2 xx 0.2 + 0.3 xx 0.3 xx 0....

    Text Solution

    |

  3. Find the sum of (1 - (1)/(n + 1)) + (1 - (2)/(n + 1)) + (1 - (3)/(n + ...

    Text Solution

    |

  4. If I = (3)/(4) + (5)/(6), II = 3 div [(4 div 5) div 6], III = [3 div (...

    Text Solution

    |

  5. The value of 1 div [1 + 1 div {1 + 1 div (1 + 1 div 2)}] is

    Text Solution

    |

  6. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  7. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  8. The simplification of 3.bar(36) - 2.bar(05) + 1.bar(33) equals:

    Text Solution

    |

  9. If x [-2 {-4(-a)}] + 5[-2{-2(-a)}] = 4a, then x =

    Text Solution

    |

  10. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  11. If '+' means 'div', 'xx', means '-', 'div' means 'xx' and '-' means '+...

    Text Solution

    |

  12. The value of [0.9-{2.3-3.2-(7.1 - 5.4 - 3.5)}] is: [0.9-{2.3-3.2-(7....

    Text Solution

    |

  13. (32)^(3) + (79)^(3) - (111)^(3) + 3 xx 32 xx 79 xx 111 is equal to

    Text Solution

    |

  14. ((5)/(2) + (3)/(2)) ((25)/(4) - (15)/(4) + (9)/(4)) is equal to

    Text Solution

    |

  15. (0.2 xx 0.2 + 0.01) (0.1 xx 0.1 + 0.02)^(-1) is equal to

    Text Solution

    |

  16. (1)/(2) + {4 (3)/(4) - (4 (1)/(6) - 2 (1)/(3))} is equal to

    Text Solution

    |

  17. The simplification of (1)/(8) + (1)/(8^(2)) + (1)/(8^(3)) + (1)/(8^(4)...

    Text Solution

    |

  18. 8.7 - [7.6 - {6.5 - (5.4 - bar(4.3 - 2))}] is simplified to :

    Text Solution

    |

  19. The simplified value of [(0.111)^(3) + (0.222)^(3) - (0.333)^(3) + (0....

    Text Solution

    |

  20. The simplified value of (4)/(15)"of" (5)/(8) xx 6 + 15 - 10 is

    Text Solution

    |