Home
Class 14
MATHS
((1)/(3.5) + (1)/(5.7) + (1)/(7.9) + (1)...

`((1)/(3.5) + (1)/(5.7) + (1)/(7.9) + (1)/(9.11) + (1)/(11.13) + (1)/(13.15))` is equal to

A

`(2)/(45)`

B

`(4)/(45)`

C

`(7)/(45)`

D

`(2)/(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \frac{1}{9.11} + \frac{1}{11.13} + \frac{1}{13.15}, \] we will break it down step by step. ### Step 1: Rewrite the fractions We can rewrite each term in the expression: \[ \frac{1}{3.5} = \frac{1}{3 \times 5}, \quad \frac{1}{5.7} = \frac{1}{5 \times 7}, \quad \frac{1}{7.9} = \frac{1}{7 \times 9}, \] \[ \frac{1}{9.11} = \frac{1}{9 \times 11}, \quad \frac{1}{11.13} = \frac{1}{11 \times 13}, \quad \frac{1}{13.15} = \frac{1}{13 \times 15}. \] ### Step 2: Combine the fractions Now, we can express the entire sum: \[ \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \frac{1}{7 \times 9} + \frac{1}{9 \times 11} + \frac{1}{11 \times 13} + \frac{1}{13 \times 15}. \] ### Step 3: Use the formula for partial fractions We can use the identity: \[ \frac{1}{a(b)} = \frac{1}{b} - \frac{1}{a} \] to simplify each term. For example, \[ \frac{1}{3 \times 5} = \frac{1}{3} - \frac{1}{5}, \quad \frac{1}{5 \times 7} = \frac{1}{5} - \frac{1}{7}, \quad \frac{1}{7 \times 9} = \frac{1}{7} - \frac{1}{9}, \] \[ \frac{1}{9 \times 11} = \frac{1}{9} - \frac{1}{11}, \quad \frac{1}{11 \times 13} = \frac{1}{11} - \frac{1}{13}, \quad \frac{1}{13 \times 15} = \frac{1}{13} - \frac{1}{15}. \] ### Step 4: Combine all the terms Now, substituting back into the sum: \[ \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{9}\right) + \left(\frac{1}{9} - \frac{1}{11}\right) + \left(\frac{1}{11} - \frac{1}{13}\right) + \left(\frac{1}{13} - \frac{1}{15}\right). \] ### Step 5: Simplify the expression Notice that all intermediate terms cancel out: \[ \frac{1}{3} - \frac{1}{15}. \] ### Step 6: Calculate the final result Now we need to find a common denominator to combine these two fractions. The common denominator of 3 and 15 is 15: \[ \frac{1}{3} = \frac{5}{15}, \quad \frac{1}{15} = \frac{1}{15}. \] So, \[ \frac{5}{15} - \frac{1}{15} = \frac{4}{15}. \] ### Final Answer Thus, the value of the expression \[ \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \frac{1}{9.11} + \frac{1}{11.13} + \frac{1}{13.15} = \frac{4}{15}. \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Add the following rational numbers : (i) (12)/(7) and (3)/(7) : (ii) (-2)/(5) and (1)/(5) (iii) (3)/(8) and (1)/(8) (iv) (-5)/(11) and (7)/(-11) (v) (9)/(-13) and (-11)/(-13) (vi) (-2)/(9) and (5)/(9) (vii) -(17)/(9) and (-11)/(9) (viii) (-3)/(7) and (5)/(-7)

12(1)/(3)+10(5)/(6)-7(2)/(3)-1(4)/(7)=?( a) 11(13)/(14) (b) 13(11)/(14)(c)13(13)/(14) (d) 14(11)/(13) (e) None of these

The expression (5(5)/(8))/(6(3)/(7)) of (6(7)/(11))/(9(1)/(8))-:(8)/(9)(2(3)/(11)+(13)/(22)) of (3)/(5) equals (a) 1 (b) (1)/(2)( c) (7)/(9)( d) (5)/(12)

(1)/(5)times(11)/(13)+7(4)/(5)times(1)/(13)=

(1)/(3.5)+(1)/(5.7)+(1)/(7.9)+…….. up to n terms is equal to

If 1-(1)/(3)+(1)/(5)-(1)/(7)+(1)/(9)-(1)/(11)+...=(pi)/(4), then value of (1)/(1xx3)+(1)/(5xx7)+(1)/(9xx11)+... is pi/8bpi/6c. pi/4d. pi/36

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. The value of the following is : (0.2 xx 0.02 xx 0.002 xx 32)/(0.4 xx 0...

    Text Solution

    |

  2. (256)^(0.16) xx (16)^(0.18) is equal to

    Text Solution

    |

  3. ((1)/(3.5) + (1)/(5.7) + (1)/(7.9) + (1)/(9.11) + (1)/(11.13) + (1)/(1...

    Text Solution

    |

  4. (53 xx 87 + 159 xx 21 + 106 xx 25) is equal to

    Text Solution

    |

  5. The value of (0.125 + 0.027)/(0.25 - 0.15 + 0.09) is

    Text Solution

    |

  6. The value of (8.(3.75)^3+1)/((7.5)^(2)-6.5) is

    Text Solution

    |

  7. The value of ((2.697 - 0.498)^(2) + (2.697 + 0.498)^(2))/(2.697 xx 2.6...

    Text Solution

    |

  8. (0.3555 xx 0.5555 xx 2.025)/(0.225 xx 1.7775 xx 0.2222) is equal to :

    Text Solution

    |

  9. If root(2)(0.014xx0.14x)=0.014xx0.14root(2)y then x/y is equal to

    Text Solution

    |

  10. (4.41 xx 0.16)/(2.1 xx 1.6 xx 0.21) is simplified to

    Text Solution

    |

  11. (0.1 xx 0.01 xx 0.001 xx 10^(7)) is equal to

    Text Solution

    |

  12. (3.25 xx 3.20 - 3.20 xx 3.05)/(0.064) is equal to :

    Text Solution

    |

  13. {((0.1)^(2) - (0.01)^(2))/(0.0001) + 1} is equal to

    Text Solution

    |

  14. (0.5 xx 5 + 0.25 xx 0.5 + 0.5 xx 4 + 0.5 xx 0.75) is equal to

    Text Solution

    |

  15. ((5 + 5 + 5 + 5) + 5)/(3 + 3 + 3 + 3 + 3) is equal to

    Text Solution

    |

  16. ((100 - 1) (100 - 2) (100 - 3)...(100 - 200))/(100 xx 99 xx 98 xx...xx...

    Text Solution

    |

  17. (0.9 xx 0.9 xx 0.9 + 0.1 xx 0.1 xx 0.1) is equal to

    Text Solution

    |

  18. Simplify : (0.0347 xx 0.0347 xx 0.0347 + (0.9653)^(3))/((0.0347)^(2) -...

    Text Solution

    |

  19. The value of ((3.2)^(3) - 0.008)/((3.2)^(2) + 0.64 + 0.04) is

    Text Solution

    |

  20. Simplify : ((1)/(3) + (1)/(4) [(2)/(5) - (1)/(2)])/(1 (2)/(3)"of" (3)/...

    Text Solution

    |