Home
Class 14
MATHS
Simplify : ((1)/(3) + (1)/(4) [(2)/(5) -...

Simplify : `((1)/(3) + (1)/(4) [(2)/(5) - (1)/(2)])/(1 (2)/(3)"of" (3)/(4) - (3)/(4) "of" (4)/(5))`

A

`(37)/(78)`

B

`(37)/(13)`

C

`(74)/(78)`

D

`(74)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{\left(\frac{1}{3} + \frac{1}{4} \left(\frac{2}{5} - \frac{1}{2}\right)\right)}{\left(1 \cdot \frac{2}{3} \text{ of } \frac{3}{4} - \frac{3}{4} \text{ of } \frac{4}{5}\right)} \] we will follow these steps: ### Step 1: Simplify the numerator Start with the expression inside the parentheses in the numerator: \[ \frac{2}{5} - \frac{1}{2} \] To subtract these fractions, we need a common denominator. The least common multiple of 5 and 2 is 10. Convert each fraction: \[ \frac{2}{5} = \frac{4}{10} \quad \text{and} \quad \frac{1}{2} = \frac{5}{10} \] Now, subtract: \[ \frac{4}{10} - \frac{5}{10} = \frac{-1}{10} \] Now substitute back into the numerator: \[ \frac{1}{3} + \frac{1}{4} \left(\frac{-1}{10}\right) \] ### Step 2: Multiply \(\frac{1}{4}\) by \(\frac{-1}{10}\) This gives: \[ \frac{1}{4} \cdot \frac{-1}{10} = \frac{-1}{40} \] Now, add this to \(\frac{1}{3}\): \[ \frac{1}{3} + \frac{-1}{40} \] ### Step 3: Find a common denominator for the addition The least common multiple of 3 and 40 is 120. Convert each fraction: \[ \frac{1}{3} = \frac{40}{120} \quad \text{and} \quad \frac{-1}{40} = \frac{-3}{120} \] Now, add: \[ \frac{40}{120} - \frac{3}{120} = \frac{37}{120} \] ### Step 4: Simplify the denominator Now, simplify the denominator: \[ 1 \cdot \frac{2}{3} \text{ of } \frac{3}{4} - \frac{3}{4} \text{ of } \frac{4}{5} \] Calculating \(1 \cdot \frac{2}{3} \text{ of } \frac{3}{4}\): \[ \frac{2}{3} \cdot \frac{3}{4} = \frac{2 \cdot 3}{3 \cdot 4} = \frac{2}{4} = \frac{1}{2} \] Now calculate \(\frac{3}{4} \text{ of } \frac{4}{5}\): \[ \frac{3}{4} \cdot \frac{4}{5} = \frac{3 \cdot 4}{4 \cdot 5} = \frac{3}{5} \] Now subtract: \[ \frac{1}{2} - \frac{3}{5} \] ### Step 5: Find a common denominator for the subtraction The least common multiple of 2 and 5 is 10. Convert each fraction: \[ \frac{1}{2} = \frac{5}{10} \quad \text{and} \quad \frac{3}{5} = \frac{6}{10} \] Now, subtract: \[ \frac{5}{10} - \frac{6}{10} = \frac{-1}{10} \] ### Step 6: Combine the results Now we have: \[ \frac{\frac{37}{120}}{\frac{-1}{10}} = \frac{37}{120} \cdot \frac{-10}{1} = \frac{-370}{120} \] ### Step 7: Simplify the fraction To simplify \(\frac{-370}{120}\), we can divide both the numerator and the denominator by 10: \[ \frac{-37}{12} \] ### Final Answer Thus, the simplified expression is: \[ \frac{-37}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Simplify : ((1)/(3)+(3)/(4)((2)/(5)-(1)/(3)))/(1(2)/(3) "of"(3)/(4)-(1)/(4)"of"(4)/(5))

Simplify : 2(3)/(4)-1(5)/(6)

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. Simplify : (0.0347 xx 0.0347 xx 0.0347 + (0.9653)^(3))/((0.0347)^(2) -...

    Text Solution

    |

  2. The value of ((3.2)^(3) - 0.008)/((3.2)^(2) + 0.64 + 0.04) is

    Text Solution

    |

  3. Simplify : ((1)/(3) + (1)/(4) [(2)/(5) - (1)/(2)])/(1 (2)/(3)"of" (3)/...

    Text Solution

    |

  4. (0.04)/( 0.03) of ((3(1)/(3) - 2 ( 1)/( 2))+( 1)/( 2) " of " 1(1)/(4...

    Text Solution

    |

  5. (113^(2) + 115^(2) + 117^(2) - 113 xx 115 - 115 xx 117 - 117 xx 113) i...

    Text Solution

    |

  6. If (1)/(6)" of x" - (7)/(2) "of" (3)/(7) equals - (7)/(4), then the va...

    Text Solution

    |

  7. If 6088 xx ? = 7610, then value of '?' is

    Text Solution

    |

  8. Simplify : (("533 bxaz"))/(("41 ab"))

    Text Solution

    |

  9. If ((5)/(9)"of x") - ((2)/(5) "of" (9)/(4)) equals -(4)/(5), then find...

    Text Solution

    |

  10. If 14.35 - (1.956 - x) - 83.92 = 3.858, then what is the value of x ?

    Text Solution

    |

  11. What is the value of 999 (1)/(2) + 999 (1)/(6) + 999 (1)/(12) + 999 (1...

    Text Solution

    |

  12. What is the value of 111 (1)/(2) + 111 (1)/(6) + 111 (1)/(12) + 111 (1...

    Text Solution

    |

  13. If (-(1)/(2)) xx (x - 5) + 3 = - (5)/(2), then what is the value of x ...

    Text Solution

    |

  14. What is the value of 9 (1)/(3) + 19 (2)/(3) + 20 (3)/(4) + 19 (1)/(4) ...

    Text Solution

    |

  15. What is the value of 5 (1)/(2) + 7 (1)/(2) + 11 (1)/(2) ?

    Text Solution

    |

  16. What is the value of ((1)/(3) + (1)/(3) xx (1)/(3))/((1)/(3) xx (1)/(3...

    Text Solution

    |

  17. If M = 0.1 + (0.1)^(2) + (0.01)^(2) and N = 0.3 + (0.03)^(2) + (0.003)...

    Text Solution

    |

  18. If P = (96)/(95 xx 97), Q = (97)/(96 xx 98) and R = (1)/(97), then whi...

    Text Solution

    |

  19. Which of the following statements (s) is/are TRUE ? I. 11 (1)/(2) + ...

    Text Solution

    |

  20. If M - ((3)/(7)) div ((6)/(5)) xx ((2)/(3)) + ((1)/(5) xx ((3)/(2)) an...

    Text Solution

    |