Home
Class 14
MATHS
9 (3)/(4) + [2(1)/(6) + {4 (1)/(3) - (2 ...

`9 (3)/(4) + [2(1)/(6) + {4 (1)/(3) - (2 (1)/(2) + (3)/(4))}]` is equal to

A

13

B

`(15)/(4)`

C

14

D

`(17)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 9 \frac{3}{4} + \left[ 2 \frac{1}{6} + \left\{ 4 \frac{1}{3} - \left( 2 \frac{1}{2} + \frac{3}{4} \right) \right\} \right] \), we will follow the order of operations (BODMAS/BIDMAS). ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert all mixed numbers to improper fractions. - \( 9 \frac{3}{4} = \frac{9 \times 4 + 3}{4} = \frac{36 + 3}{4} = \frac{39}{4} \) - \( 2 \frac{1}{6} = \frac{2 \times 6 + 1}{6} = \frac{12 + 1}{6} = \frac{13}{6} \) - \( 4 \frac{1}{3} = \frac{4 \times 3 + 1}{3} = \frac{12 + 1}{3} = \frac{13}{3} \) - \( 2 \frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{4 + 1}{2} = \frac{5}{2} \) Now, the expression is: \[ \frac{39}{4} + \left[ \frac{13}{6} + \left\{ \frac{13}{3} - \left( \frac{5}{2} + \frac{3}{4} \right) \right\} \right] \] ### Step 2: Simplify Inside the Parentheses Next, we simplify \( \frac{5}{2} + \frac{3}{4} \). To add these fractions, we need a common denominator. The LCM of 2 and 4 is 4. - Convert \( \frac{5}{2} \) to have a denominator of 4: \[ \frac{5}{2} = \frac{5 \times 2}{2 \times 2} = \frac{10}{4} \] Now we can add: \[ \frac{10}{4} + \frac{3}{4} = \frac{10 + 3}{4} = \frac{13}{4} \] Now, substitute back into the expression: \[ \frac{39}{4} + \left[ \frac{13}{6} + \left\{ \frac{13}{3} - \frac{13}{4} \right\} \right] \] ### Step 3: Simplify the Bracket Now, simplify \( \frac{13}{3} - \frac{13}{4} \). To subtract these fractions, we need a common denominator. The LCM of 3 and 4 is 12. - Convert \( \frac{13}{3} \) to have a denominator of 12: \[ \frac{13}{3} = \frac{13 \times 4}{3 \times 4} = \frac{52}{12} \] - Convert \( \frac{13}{4} \) to have a denominator of 12: \[ \frac{13}{4} = \frac{13 \times 3}{4 \times 3} = \frac{39}{12} \] Now we can subtract: \[ \frac{52}{12} - \frac{39}{12} = \frac{52 - 39}{12} = \frac{13}{12} \] Substituting back, we have: \[ \frac{39}{4} + \left[ \frac{13}{6} + \frac{13}{12} \right] \] ### Step 4: Simplify the Next Bracket Now, we simplify \( \frac{13}{6} + \frac{13}{12} \). The LCM of 6 and 12 is 12. - Convert \( \frac{13}{6} \) to have a denominator of 12: \[ \frac{13}{6} = \frac{13 \times 2}{6 \times 2} = \frac{26}{12} \] Now we can add: \[ \frac{26}{12} + \frac{13}{12} = \frac{26 + 13}{12} = \frac{39}{12} \] Substituting back, we have: \[ \frac{39}{4} + \frac{39}{12} \] ### Step 5: Add the Final Fractions Now we need to add \( \frac{39}{4} + \frac{39}{12} \). The LCM of 4 and 12 is 12. - Convert \( \frac{39}{4} \) to have a denominator of 12: \[ \frac{39}{4} = \frac{39 \times 3}{4 \times 3} = \frac{117}{12} \] Now we can add: \[ \frac{117}{12} + \frac{39}{12} = \frac{117 + 39}{12} = \frac{156}{12} \] ### Step 6: Simplify the Final Result Now simplify \( \frac{156}{12} \): \[ \frac{156}{12} = 13 \] Thus, the final answer is: \[ \boxed{13} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

9(3)/(4)-:[2(1)/(6)+{4(1)/(3)-(1(1)/(2)+1(3)/(4))}]

2^(1/2)*4^(3/4) is equal to

The sum of the infinite series (1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)((1)/(3^(2)) + (1)/(4^(2))) + (1)/(6) ((1)/(3^(3)) + (1)/(4^(3))) - ...is equal to

5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(5) div 9(1)/(2))]]

The LCM of (1)/(3), (2)/(9), (5)/(6) and (4)/(27) is equal to

9 3/4 div [2 1/6 + {4 1/3-(2 1/2+3/4)}] is equal to: 9 3/4 div [2 1/6 + {4 1/3-(2 1/2+3/4)}] किसके बराबर है ?

9 3/4 div [2 1/6 div {4 1/3-(2 1/2+3/4)}] is equal to: 9 3/4 div [2 1/6 div {4 1/3-(2 1/2+3/4)}] का मान ज्ञात करें ।

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. What is the value of 12^(2) - 11^(2) + 14^(2) - 13^(2) + 16^(2) - 15^(...

    Text Solution

    |

  2. Simplify : b - [b - [b- (a + b) - (b - (b-a-b)) + 2a]

    Text Solution

    |

  3. Simplify : (213 xx 213 + 187 xx 187)

    Text Solution

    |

  4. If N = (12345)^(2) + 12345 + 12346, then what is the value of sqrt(N) ...

    Text Solution

    |

  5. Which of the following statement (s) is/are TRUE ? I. ((0.03)/(0.2))...

    Text Solution

    |

  6. What is the value of 1006^(2) - 1007 xx 1005 + 1008 xx 1004 - 1009 xx ...

    Text Solution

    |

  7. Assume 57 + 59 + 109 = 0, then find the value of 57^(3) + 59^(3) + 109...

    Text Solution

    |

  8. If (256)/(0.256) = (25.6)/(x), what will be the value of x ?

    Text Solution

    |

  9. Calculate : (7|2-6|-4|5| + 5)/(-7(2)-2xx2 + 2 + 2)

    Text Solution

    |

  10. What is the value of 25 of 4 - 30 + (2^(2) + 18) ?

    Text Solution

    |

  11. What is the value of 30 div 6 xx "5 of" (2 + 3) - 12 (3 xx 2) ?

    Text Solution

    |

  12. Simplify : 8.4 - [5 + "0.3 of" (3.3 - 2.6 xx 1.07)]

    Text Solution

    |

  13. Simplify : 25 - 48 div 6 + 12 xx 2

    Text Solution

    |

  14. Simplify : 17 - 4.5 div 9 + 1.3 xx 0.6 + 0.4

    Text Solution

    |

  15. 9 (3)/(4) + [2(1)/(6) + {4 (1)/(3) - (2 (1)/(2) + (3)/(4))}] is equal ...

    Text Solution

    |

  16. 4 (4)/(5) + (3)/(7) "of 7" + (4)/(5) xx (3)/(10) - (1)/(5) is equal to...

    Text Solution

    |

  17. 5 (1)/(5) - [3 (1)/(2) - {(5)/(6) - ((3)/(5) + (1)/(10)-(4)/(15)}] is ...

    Text Solution

    |

  18. The value of 3 (5)/(6) + [3 (2)/(3) - {(15)/(4)(5(4)/(5) + 14 (1)/(2)}...

    Text Solution

    |

  19. The value of 2 xx 3 div "2 of 3" xx 2 div (4 + 4 xx 4 div "4 of 4" - 4...

    Text Solution

    |

  20. The value of (5+3 div 5xx5)//(3 div 3 of 6) of (4xx 4 div 4 of 4+4 div...

    Text Solution

    |