Home
Class 14
MATHS
Simplify : 5(1)/(2) - [2 (1)/(3) div {(3...

Simplify : `5(1)/(2) - [2 (1)/(3) div {(3)/(4) - (1)/(2) ((2)/(3) - bar((1)/(6)-(1)/(8)))}]`

A

`(1)/(2)`

B

`(1)/(4)`

C

`(1)/(6)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 5\left(\frac{1}{2}\right) - \left[2\left(\frac{1}{3}\right) \div \left\{ \left(\frac{3}{4}\right) - \left(\frac{1}{2}\right) \left(\left(\frac{2}{3}\right) - \overline{\left(\frac{1}{6} - \frac{1}{8}\right)}\right)\right\}\right] \), we will follow the B-BODMAS rule step by step. ### Step 1: Simplify the bar expression First, we need to simplify the expression inside the bar: \( \frac{1}{6} - \frac{1}{8} \). To do this, we find the least common multiple (LCM) of 6 and 8, which is 24. \[ \frac{1}{6} = \frac{4}{24}, \quad \frac{1}{8} = \frac{3}{24} \] Now, we subtract: \[ \frac{1}{6} - \frac{1}{8} = \frac{4}{24} - \frac{3}{24} = \frac{1}{24} \] ### Step 2: Substitute back into the expression Now, we substitute \( \frac{1}{24} \) back into the expression: \[ 5\left(\frac{1}{2}\right) - \left[2\left(\frac{1}{3}\right) \div \left\{ \left(\frac{3}{4}\right) - \left(\frac{1}{2}\right) \left(\left(\frac{2}{3}\right) - \frac{1}{24}\right)\right\}\right] \] ### Step 3: Simplify the inner expression Next, we simplify \( \left(\frac{2}{3}\right) - \frac{1}{24} \). The LCM of 3 and 24 is 24. \[ \frac{2}{3} = \frac{16}{24} \] Now, we subtract: \[ \frac{2}{3} - \frac{1}{24} = \frac{16}{24} - \frac{1}{24} = \frac{15}{24} = \frac{5}{8} \] ### Step 4: Substitute back into the expression Now we substitute \( \frac{5}{8} \) back into the expression: \[ 5\left(\frac{1}{2}\right) - \left[2\left(\frac{1}{3}\right) \div \left\{ \left(\frac{3}{4}\right) - \left(\frac{1}{2}\right) \left(\frac{5}{8}\right)\right\}\right] \] ### Step 5: Simplify \( \left(\frac{3}{4}\right) - \left(\frac{1}{2}\right) \left(\frac{5}{8}\right) \) First, calculate \( \left(\frac{1}{2}\right) \left(\frac{5}{8}\right) \): \[ \frac{1}{2} \cdot \frac{5}{8} = \frac{5}{16} \] Now, we subtract: \[ \frac{3}{4} - \frac{5}{16} \] The LCM of 4 and 16 is 16. \[ \frac{3}{4} = \frac{12}{16} \] Now, we subtract: \[ \frac{3}{4} - \frac{5}{16} = \frac{12}{16} - \frac{5}{16} = \frac{7}{16} \] ### Step 6: Substitute back into the expression Now we substitute \( \frac{7}{16} \) back into the expression: \[ 5\left(\frac{1}{2}\right) - \left[2\left(\frac{1}{3}\right) \div \frac{7}{16}\right] \] ### Step 7: Simplify \( 2\left(\frac{1}{3}\right) \div \frac{7}{16} \) First, calculate \( 2\left(\frac{1}{3}\right) \): \[ 2 \cdot \frac{1}{3} = \frac{2}{3} \] Now, divide by \( \frac{7}{16} \): \[ \frac{2}{3} \div \frac{7}{16} = \frac{2}{3} \cdot \frac{16}{7} = \frac{32}{21} \] ### Step 8: Substitute back into the expression Now we have: \[ 5\left(\frac{1}{2}\right) - \frac{32}{21} \] ### Step 9: Simplify \( 5\left(\frac{1}{2}\right) \) Calculate \( 5\left(\frac{1}{2}\right) \): \[ 5 \cdot \frac{1}{2} = \frac{5}{2} \] ### Step 10: Final subtraction Now we need to subtract: \[ \frac{5}{2} - \frac{32}{21} \] The LCM of 2 and 21 is 42. Convert both fractions: \[ \frac{5}{2} = \frac{105}{42}, \quad \frac{32}{21} = \frac{64}{42} \] Now, subtract: \[ \frac{105}{42} - \frac{64}{42} = \frac{41}{42} \] Thus, the final simplified expression is: \[ \frac{41}{42} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Simplify : 8 (1)/(2)-[3 (1)/(4)-:{1(1)/(4) - (1)/(2) ( 1 (1)/(2)-(1)/(3)-(1)/(6))}]

(5-[(3)/(4)+{2(1)/(2)-((1)/(2)+bar((1)/(6)-(1)/(7)))}])/(2)=?

[[ Simplify: [3(1)/(4)-:{1(1)/(4)-(1)/(2)(2(1)/(2)-(1)/(4)-(1)/(6))}]

Simplify : 2(3)/(4)-1(5)/(6)

5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(5) div 9(1)/(2))]]

KIRAN PUBLICATION-SIMPLIFICATION-TEST YOURSELF
  1. Simplify : 7 (1)/(2) - [2 (1)/(4) + {(1)/(4)-(1)/(2) (1 (1)/(2) - (1)/...

    Text Solution

    |

  2. Simplify : 3 div [(8-5) div {(4-2) div (2 + (8)/(13))}] = ?

    Text Solution

    |

  3. Simplify : 5(1)/(2) - [2 (1)/(3) div {(3)/(4) - (1)/(2) ((2)/(3) - bar...

    Text Solution

    |

  4. Simplify : (3.5 xx 1.5)/(0.025 + 0.125 xx 7.5) xx (1)/(3 + (1)/(1 + (1...

    Text Solution

    |

  5. Simplify : (3)/(4 + (5)/(6 + (7)/(8)))-(3)/(5) + (1)/(2) "of 1"(1)/(5)...

    Text Solution

    |

  6. Simplify : 2 div (3)/(17) "of" (2 (3)/(4)+ 3(5)/(8)) + (2)/(5) div 2 (...

    Text Solution

    |

  7. (2.5 xx 3 + 7.5 div 2.5 - "0.5 of 3")/(47 + 12 div 1.5 - "6 of 2" xx 3...

    Text Solution

    |

  8. Simplify : (17)/(7 + (3)/(4 - 2(3)/(4)))xx (2021)/(2193) div (1 (37)/(...

    Text Solution

    |

  9. Simplify : 999 (998)/(999) xx 999 + 999

    Text Solution

    |

  10. Simplify : (8 (3)/(5) + 7 (3)/(4) + 5 (2)/(3) - 4 (1)/(2))/(13 - 11 (9...

    Text Solution

    |

  11. (1 (7)/(9)"of" (27)/(64))/((11)/(12) xx 9 (9)/(11)) div (4 (4)/(7) "of...

    Text Solution

    |

  12. Simplify : 120 + "3 of 5" div [7 xx 2 {10 div 5(24 - 10 xx 2 + bar(7 +...

    Text Solution

    |

  13. Simplify : (1)/(8)"of" ((1)/(10)-(1)/(11))div ((1)/(7) - (1)/(9) div (...

    Text Solution

    |

  14. Simplify : (2(4)/(9) div 3 (2)/(3) "of" (2)/(5) xx (3)/(5) + 1 (1)/(9)...

    Text Solution

    |

  15. Simplify : (5 + 5 xx 5)/(5 xx 5 + 5) xx ((1)/(5) div (1)/(5) "of" (1)/...

    Text Solution

    |

  16. Simplify : ((5)/(6) + (7)/(8)"of" (4)/(5) div (3)/(4) "of" (9)/(10))/(...

    Text Solution

    |

  17. Simplify : ((2)/(3) div (3)/(4)"of" (5)/(6))/((2)/(3) div (3)/(4) xx (...

    Text Solution

    |

  18. If the numerator of a fraction is increased by (1)/(4) and the denomin...

    Text Solution

    |

  19. If the numerator of a fraction is increased by 250% and the denominato...

    Text Solution

    |

  20. If the difference between the reciprocal of a positive proper fraction...

    Text Solution

    |