Home
Class 14
MATHS
Greatest among the numbers root3(9), sqr...

Greatest among the numbers `root3(9)`, `sqrt(3)`, `root4(16)`, `root6(80)` is

A

`root3(9)`

B

`sqrt(3)`

C

`root4(16)`

D

`root6(80)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest among the numbers \( \sqrt[3]{9} \), \( \sqrt{3} \), \( \sqrt[4]{16} \), and \( \sqrt[6]{80} \), we will convert each of these roots into powers of 3, so we can compare them easily. ### Step 1: Convert each root into exponential form 1. **Convert \( \sqrt[3]{9} \)**: \[ \sqrt[3]{9} = 9^{1/3} = (3^2)^{1/3} = 3^{2/3} \] 2. **Convert \( \sqrt{3} \)**: \[ \sqrt{3} = 3^{1/2} \] 3. **Convert \( \sqrt[4]{16} \)**: \[ \sqrt[4]{16} = 16^{1/4} = (4^2)^{1/4} = 4^{1/2} = 2^{1/2} \cdot 2^{1/2} = 2^{1} = 2 \] Since \( 2 = 3^{\log_3{2}} \), we can keep it as \( 2^{1} \) for now. 4. **Convert \( \sqrt[6]{80} \)**: \[ \sqrt[6]{80} = 80^{1/6} = (16 \cdot 5)^{1/6} = (4^2 \cdot 5)^{1/6} = (2^4 \cdot 5)^{1/6} = 2^{4/6} \cdot 5^{1/6} = 2^{2/3} \cdot 5^{1/6} \] ### Step 2: Find a common exponent to compare To compare these numbers, we can find a common base. The least common multiple of the denominators of the exponents (3, 2, 1, 6) is 6. We will convert all the expressions to have a denominator of 6. 1. **For \( 3^{2/3} \)**: \[ 3^{2/3} = 3^{4/6} \] 2. **For \( 3^{1/2} \)**: \[ 3^{1/2} = 3^{3/6} \] 3. **For \( 2 \)**: \[ 2 = 2^{1} = 2^{6/6} = 3^{\log_3{2}} \text{ (but we will keep it as is for comparison)} \] 4. **For \( 2^{2/3} \cdot 5^{1/6} \)**: \[ 2^{2/3} = 2^{4/6} \quad \text{and} \quad 5^{1/6} = 5^{1/6} \] ### Step 3: Calculate the values Now we can calculate the approximate values of these expressions: 1. **Calculate \( 3^{4/6} \)**: \[ 3^{4/6} \approx 3^{0.67} \approx 2.08 \] 2. **Calculate \( 3^{3/6} \)**: \[ 3^{3/6} \approx 3^{0.5} \approx 1.73 \] 3. **Calculate \( 2^{6/6} \)**: \[ 2^{1} = 2 \] 4. **Calculate \( 2^{4/6} \cdot 5^{1/6} \)**: \[ 2^{4/6} \approx 1.587 \quad \text{and} \quad 5^{1/6} \approx 1.348 \] \[ 2^{4/6} \cdot 5^{1/6} \approx 1.587 \cdot 1.348 \approx 2.14 \] ### Step 4: Compare the values Now we compare the approximate values: - \( \sqrt[3]{9} \approx 2.08 \) - \( \sqrt{3} \approx 1.73 \) - \( \sqrt[4]{16} = 2 \) - \( \sqrt[6]{80} \approx 2.14 \) ### Conclusion The greatest among the numbers \( \sqrt[3]{9} \), \( \sqrt{3} \), \( \sqrt[4]{16} \), and \( \sqrt[6]{80} \) is \( \sqrt[6]{80} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -IV|198 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -II|27 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Find the smallest numbers root(3)(6),root(6)(24) and root(4)(8)

The greatest number among root3(2) , sqrt(3) , root3(5) and 1.5 is

Knowledge Check

  • The greatest among the numbers sqrt(2) , root3(3) , root4(5) , root6(6) is

    A
    `root6(12)`
    B
    `root3(3)`
    C
    `root6(6)`
    D
    `root4(5)`
  • The greatest among the numbers root(4)(2),root(5)(3),root(10)(6) and root(20) (15) is

    A
    `root ( 20)(15) `
    B
    `root ( 4) ( 2)`
    C
    `root ( 5) ( 3)`
    D
    `root ( 10) ( 6)`
  • Among the numbers sqrt(2) , root3(9) , root4(16) , root5(32) , the greatest one is

    A
    `sqrt(2)`
    B
    `root3(9)`
    C
    `root4(16)`
    D
    `root5(32)`
  • Similar Questions

    Explore conceptually related problems

    Which of the following is the largest number ? sqrt(2),root3(3), root4(4), root6(6)

    The greatest one of sqrt(3) , root3(4) , root4(6) and root6(8) is

    The greatest one of sqrt(2) , root3(3) , root6(6) , root5(5) is

    The largest number among sqrt(2) , root3(3) , root4(4) is

    The smallest among root6(12) , root3(4) , root4(5) , sqrt(3) is