Home
Class 14
MATHS
sqrt(2+sqrt(2+sqrt(2+….))) is equal to...

`sqrt(2+sqrt(2+sqrt(2+….)))` is equal to

A

`sqrt(2)`

B

`2sqrt(2)`

C

`2`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(2+sqrt(2+sqrt(2+ dot))) is equal to (a) 1 (b) 1.5 (c) 2 (d) 2.5

sqrt(2+sqrt(3))*sqrt(2+sqrt(2+sqrt(3)))*sqrt(2+sqrt(2+sqrt(2+sqrt(3))))sqrt(2-sqrt(2+sqrt(2+sqrt(3)))) is equal to a.1b.2c.4dsqrt(6)

(sqrt(5)+sqrt(3))((3sqrt(3))/(sqrt(5)+sqrt(2))-sqrt(5)/(sqrt(3)+sqrt(2))) is equal to :

Given that: sqrt(3) = 1.732, (sqrt(6) + sqrt(2)) / (sqrt(6)-sqrt(2)) is equal to:

sqrt(10+2sqrt(6)+2sqrt(10)+2sqrt(15)) is equal to (sqrt(2)+sqrt(3)+sqrt(5))(sqrt(2)+sqrt(3)-sqrt(5))(c)(sqrt(2)+sqrt(5)-sqrt(3))(d) None of these

If sqrt(2)=1.4142 then sqrt((sqrt(2)-1)/(sqrt(2)+1)) is equal to

The value of log_(2)(sqrt(17+2sqrt(6))-sqrt(7-2sqrt(6))) is equal to