Home
Class 14
MATHS
The value of sqrt(2root3(4sqrt(2root3(4s...

The value of `sqrt(2root3(4sqrt(2root3(4sqrt(2root3(4............))))))` is

A

`2`

B

`2^(2)`

C

`2^(3)`

D

`2^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4 \ldots}}}}}} \), we can follow these steps: ### Step 1: Define the Expression Let \( x \) be the value of the entire expression: \[ x = \sqrt{2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4 \ldots}}}}}} \] ### Step 2: Rewrite the Expression Notice that the expression inside the square root repeats itself. Therefore, we can rewrite it as: \[ x = \sqrt{2 \sqrt[3]{4x}} \] ### Step 3: Square Both Sides To eliminate the square root, square both sides: \[ x^2 = 2 \sqrt[3]{4x} \] ### Step 4: Isolate the Cube Root Next, isolate the cube root term: \[ \sqrt[3]{4x} = \frac{x^2}{2} \] ### Step 5: Cube Both Sides Now, cube both sides to eliminate the cube root: \[ 4x = \left(\frac{x^2}{2}\right)^3 \] Calculating the right side: \[ 4x = \frac{x^6}{8} \] ### Step 6: Simplify the Equation Multiply both sides by 8 to eliminate the fraction: \[ 32x = x^6 \] ### Step 7: Rearrange the Equation Rearranging gives us: \[ x^6 - 32x = 0 \] ### Step 8: Factor the Equation Factor out \( x \): \[ x(x^5 - 32) = 0 \] ### Step 9: Solve for \( x \) This gives us two solutions: 1. \( x = 0 \) (not valid in this context) 2. \( x^5 = 32 \) Taking the fifth root of both sides: \[ x = 2 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(2 root(3)(4 sqrt(2 root (3)(4 sqrt(2 root (3)(4...)))))) =?

The value of log_(2)(root(3)(2+sqrt(5))+root(3)(2-sqrt(5))) is equal to

Knowledge Check

  • Find the value of sqrt(2root(3)(4sqrt(2root(3)(4sqrt(2root(3)(4....)))))) .

    A
    2
    B
    `2^(2)`
    C
    `2^(3)`
    D
    `2^(5)`
  • The value of sqrt(9+2sqrt(16)+root3(sqrt(512))) is :

    A
    `6`
    B
    `5`
    C
    `2sqrt(8)`
    D
    `3sqrt(6)`
  • The value of sqrt(21+root(3)(59+sqrt(16+root(3)(722+sqrt(49))))) is-

    A
    4
    B
    5
    C
    6
    D
    8
  • Similar Questions

    Explore conceptually related problems

    Find the value of root3(sqrt(441)+sqrt(16)+sqrt(4))

    The value of sqrt(2^(4))+root(3)(64)+root(4)(2^(8)) is :

    The value of sqrt(2^(4))+root(3)(64)+root(4)(2^(8)) is :

    The greatest of sqrt(2) , root6(3) , root3(4) , root4(5) is

    The value of (root(6)(27)-sqrt(6(3)/(4)))^(2) equals