Home
Class 14
MATHS
If x=sqrt(15sqrt(15sqrt(15sqrt(15sqrt(15...

If `x=sqrt(15sqrt(15sqrt(15sqrt(15sqrt(15.....oo)))))` and `x gt 0` , find the value of `(x^(2)+4)`.

A

125

B

179

C

200

D

229

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(10)xx sqrt(15)

5sqrt(5)+15sqrt(5) =?

sqrt(x)+sqrt(5+x)=15/sqrt(5+x)

sqrt(x)+sqrt(5+x)=15/sqrt(5+x)

If sqrt(15-xsqrt(14))=sqrt(8)-sqrt(7) , then find the value of x .

(1)/(sqrt(8+2+sqrt(15)))=

(15-2sqrt(566))*(sqrt(7)-2sqrt(2)3)

If a=sqrt(17)-sqrt(16) and b=sqrt(16)-sqrt(15) then

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(7sqrt(3))/(sqrt(10)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))-(2sqrt(5))/(sqrt(6)+sqrt(5)) , then value of x^(4)+x^(2) is

Divide 15sqrt(15) by 3sqrt(5)