Home
Class 14
MATHS
Find the value of sqrt(5sqrt(5sqrt(5sqrt...

Find the value of `sqrt(5sqrt(5sqrt(5sqrt(5))))`.

A

`5^((1)/(16))`

B

`5^((15)/(32))`

C

`5^((15)/(16))`

D

`5^((1)/(32))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{5\sqrt{5\sqrt{5\sqrt{5}}}} \), we can simplify it step by step. ### Step 1: Rewrite the expression Let's denote the expression as \( x \): \[ x = \sqrt{5\sqrt{5\sqrt{5\sqrt{5}}}} \] ### Step 2: Simplify the innermost square root We can start simplifying from the innermost square root: \[ x = \sqrt{5\sqrt{5\sqrt{5\sqrt{5}}}} = \sqrt{5\sqrt{5\sqrt{5x}}} \] ### Step 3: Substitute and simplify further Now, we can replace \( \sqrt{5\sqrt{5\sqrt{5}}} \) with \( \sqrt{5x} \): \[ x = \sqrt{5\sqrt{5x}} \] ### Step 4: Simplify the next square root Next, we simplify \( \sqrt{5x} \): \[ x = \sqrt{5\sqrt{5x}} = \sqrt{5 \cdot 5^{1/2} \cdot x^{1/2}} = \sqrt{5^{3/2} \cdot x^{1/2}} \] ### Step 5: Rewrite the expression in terms of powers This can be rewritten as: \[ x = (5^{3/2} \cdot x^{1/2})^{1/2} = 5^{3/4} \cdot x^{1/4} \] ### Step 6: Isolate \( x \) Now, we can isolate \( x \): \[ x^{3/4} = 5^{3/4} \] ### Step 7: Raise both sides to the power of \( \frac{4}{3} \) To solve for \( x \), we raise both sides to the power of \( \frac{4}{3} \): \[ x = (5^{3/4})^{4/3} = 5^{(3/4) \cdot (4/3)} = 5^{1} = 5 \] ### Final Answer Thus, the value of \( \sqrt{5\sqrt{5\sqrt{5\sqrt{5}}}} \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(5sqrt5(sqrt5(sqrt5)))

What is the value of sqrt(5sqrt(5sqrt(5sqrt(....oo))))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of (sqrt(sqrt(5)+sqrt(2))+sqrt(sqrt(5)-sqrt(2)))/(sqrt(sqrt(5)+sqrt(3)))

The value of sqrt(5 sqrt(5 sqrt(5)...)) is

If sqrt(35)=5.9160, then the value of (sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))

find the value (sqrt(5)+sqrt(7))(2+sqrt(5))

What is the value of (sqrt(6)+sqrt(5))/(sqrt(6)-sqrt(5)) ?