Home
Class 14
MATHS
Simplify : ((81)/(16))^(-(3)/(4))xx{((...

Simplify :
`((81)/(16))^(-(3)/(4))xx{((25)/(9))^(-(3)/(2))/((5)/(2))^(-3)}`

A

`1`

B

`2`

C

`0`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{81}{16}\right)^{-\frac{3}{4}} \times \frac{\left(\frac{25}{9}\right)^{-\frac{3}{2}}}{\left(\frac{5}{2}\right)^{-3}}\), we will follow these steps: ### Step 1: Apply the Negative Exponent Rule Using the rule \(a^{-b} = \frac{1}{a^b}\), we can rewrite the expression: \[ \left(\frac{81}{16}\right)^{-\frac{3}{4}} = \frac{1}{\left(\frac{81}{16}\right)^{\frac{3}{4}}} \] \[ \left(\frac{25}{9}\right)^{-\frac{3}{2}} = \frac{1}{\left(\frac{25}{9}\right)^{\frac{3}{2}}} \] \[ \left(\frac{5}{2}\right)^{-3} = \frac{1}{\left(\frac{5}{2}\right)^{3}} \] Thus, the expression becomes: \[ \frac{1}{\left(\frac{81}{16}\right)^{\frac{3}{4}}} \times \frac{\frac{1}{\left(\frac{25}{9}\right)^{\frac{3}{2}}}}{\frac{1}{\left(\frac{5}{2}\right)^{3}}} \] ### Step 2: Simplify the Fraction This simplifies to: \[ \frac{\left(\frac{5}{2}\right)^{3}}{\left(\frac{81}{16}\right)^{\frac{3}{4}} \times \left(\frac{25}{9}\right)^{\frac{3}{2}}} \] ### Step 3: Calculate Each Component 1. **Calculate \(\left(\frac{81}{16}\right)^{\frac{3}{4}}\)**: \[ \left(\frac{81}{16}\right)^{\frac{3}{4}} = \frac{81^{\frac{3}{4}}}{16^{\frac{3}{4}}} \] - \(81 = 3^4\) so \(81^{\frac{3}{4}} = (3^4)^{\frac{3}{4}} = 3^3 = 27\) - \(16 = 2^4\) so \(16^{\frac{3}{4}} = (2^4)^{\frac{3}{4}} = 2^3 = 8\) - Thus, \(\left(\frac{81}{16}\right)^{\frac{3}{4}} = \frac{27}{8}\) 2. **Calculate \(\left(\frac{25}{9}\right)^{\frac{3}{2}}\)**: \[ \left(\frac{25}{9}\right)^{\frac{3}{2}} = \frac{25^{\frac{3}{2}}}{9^{\frac{3}{2}}} \] - \(25 = 5^2\) so \(25^{\frac{3}{2}} = (5^2)^{\frac{3}{2}} = 5^3 = 125\) - \(9 = 3^2\) so \(9^{\frac{3}{2}} = (3^2)^{\frac{3}{2}} = 3^3 = 27\) - Thus, \(\left(\frac{25}{9}\right)^{\frac{3}{2}} = \frac{125}{27}\) ### Step 4: Substitute Back into the Expression Now substituting these values back, we have: \[ \frac{\left(\frac{5}{2}\right)^{3}}{\frac{27}{8} \times \frac{125}{27}} \] ### Step 5: Simplify the Denominator The denominator simplifies as follows: \[ \frac{27}{8} \times \frac{125}{27} = \frac{125}{8} \] Thus, we have: \[ \frac{\left(\frac{5}{2}\right)^{3}}{\frac{125}{8}} = \left(\frac{5}{2}\right)^{3} \times \frac{8}{125} \] ### Step 6: Calculate \(\left(\frac{5}{2}\right)^{3}\) Calculating \(\left(\frac{5}{2}\right)^{3}\): \[ \left(\frac{5}{2}\right)^{3} = \frac{125}{8} \] ### Step 7: Final Simplification Now substituting this back: \[ \frac{125}{8} \times \frac{8}{125} = 1 \] ### Conclusion Thus, the simplified expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Simplify: ((81)/(16))^(-(3)/(4))x[((25)/(9))^(-(3)/(2))-:((5)/(2))^(-3)]

((81)/(16))^((-3)/(4))times((25)/(9))^((-3)/(2))

prove that ((81)/(16))^(-(4)/(4))*{((25)/(9))^(-(3)/(2))+((5)/(2))^(-3)}=1

Prove that ((81)/(16))^(-(4)/(4))xx{((25)/(9))^(-(3)/(2))-:((5)/(2))^(-3)}=1

prove that ((81)/(16))^(-(4)/(4))*{((25)/(9))^(-(3)/(2))-:((5)/(2))^(-3)}=1

Simplify : ((25)/(9))^(-(3)/(2))xx((2)/(5))^(-3)

(1) (4)/((216)^((2)/(3)))+(1)/((256)^((3)/(4)))+(2)/((243)^((1)/(5))) (ii) ((64)/(125))^((2)/(3))+((256)/(625))^((1)/(4))+((3)/(7))^(0) (iii) ((81)/(16))^((3)/(4))(((25)/(9))^((3)/(2))-:((5)/(2))^(-3)) (iv) ((25)^((5)/(2))times(729)^((1)/(3)))/((125)^((2)/(3))times(27)^((2)/(3))times8^((4)/(3)))

When ((81)/(16))^((-3)/(4)) xx {((9)/(25))^((5)/(2)) div ( (5)/(2))^(-3)} is simplified , we get .

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Test Yourself
  1. Simplify : ((1)/(4))^(-2)-3(8)^((2)/(3))(4)^(0)+((9)/(16))^((-1)/(2)...

    Text Solution

    |

  2. Simplify : ((81)/(16))^(-(3)/(4))xx{((25)/(9))^(-(3)/(2))/((5)/(2))^...

    Text Solution

    |

  3. Simplify: (4sqrt(18))/(sqrt(12))-(8sqrt(75))/(sqrt(32))+(9sqrt(2))/(sq...

    Text Solution

    |

  4. Simplify : sqrt(3sqrt(3sqrt(3sqrt(3sqrt(3)))))

    Text Solution

    |

  5. If sqrt(root3(0.000001xx x))=0.5 then find the value of x.

    Text Solution

    |

  6. 2xx(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))=?

    Text Solution

    |

  7. ((x^a)/(x^b))^(1//ab)xx((x^b)/(x^c))^(1//bc)xx((x^c)/(x^a))^(1//ca)=?

    Text Solution

    |

  8. ((x^(a))/(x^(b)))^(a^(2)+ab+b^(2))((x^(b))/(x^(c )))^(b^(2)+bc+c^(2))(...

    Text Solution

    |

  9. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  10. Find the value of a and b in the following equation. (5+sqrt(3))/(7-...

    Text Solution

    |

  11. Simplify the following equation : (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/...

    Text Solution

    |

  12. If (7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+7sqrt(5)b, determ...

    Text Solution

    |

  13. Simplify : (6)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3...

    Text Solution

    |

  14. Given sqrt(2)=1.4142, find correct to three places of decimal the valu...

    Text Solution

    |

  15. If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  16. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), then find the va...

    Text Solution

    |

  17. Find the positive square root of 14sqrt(5)-30

    Text Solution

    |

  18. Simplify : sqrt(((6+2sqrt(3))/(33-19sqrt(3))))

    Text Solution

    |

  19. Simplify : (4sqrt(3))/(2-sqrt(2))-(30)/(4sqrt(3)-sqrt(18))-(sqrt(18)...

    Text Solution

    |

  20. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |