Home
Class 14
MATHS
((x^(a))/(x^(b)))^(a^(2)+ab+b^(2))((x^(b...

`((x^(a))/(x^(b)))^(a^(2)+ab+b^(2))((x^(b))/(x^(c )))^(b^(2)+bc+c^(2))((x^(c ))/(x^(a)))^(c^(2)+ca+a^(2))=?`

A

`3`

B

`2`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left(\frac{x^a}{x^b}\right)^{a^2 + ab + b^2} \left(\frac{x^b}{x^c}\right)^{b^2 + bc + c^2} \left(\frac{x^c}{x^a}\right)^{c^2 + ca + a^2} \] we can follow these steps: ### Step 1: Simplify each fraction Using the property of exponents that states \(\frac{x^m}{x^n} = x^{m-n}\), we can rewrite each fraction: \[ \frac{x^a}{x^b} = x^{a-b}, \quad \frac{x^b}{x^c} = x^{b-c}, \quad \frac{x^c}{x^a} = x^{c-a} \] ### Step 2: Rewrite the expression Now we can rewrite the entire expression as: \[ \left(x^{a-b}\right)^{a^2 + ab + b^2} \left(x^{b-c}\right)^{b^2 + bc + c^2} \left(x^{c-a}\right)^{c^2 + ca + a^2} \] ### Step 3: Apply the power of a power property Using the property \((x^m)^n = x^{mn}\), we can simplify each term: \[ x^{(a-b)(a^2 + ab + b^2)} \cdot x^{(b-c)(b^2 + bc + c^2)} \cdot x^{(c-a)(c^2 + ca + a^2)} \] ### Step 4: Combine the exponents Since the bases are the same, we can add the exponents: \[ x^{(a-b)(a^2 + ab + b^2) + (b-c)(b^2 + bc + c^2) + (c-a)(c^2 + ca + a^2)} \] ### Step 5: Recognize the identity Notice that the terms in the exponent resemble the identity for the difference of cubes: \[ A^3 - B^3 = (A-B)(A^2 + AB + B^2) \] In our case, we can identify: - \(A = a\), \(B = b\) - \(A = b\), \(B = c\) - \(A = c\), \(B = a\) This means that the expression simplifies to: \[ x^{(a^3 - b^3) + (b^3 - c^3) + (c^3 - a^3)} \] ### Step 6: Simplify the exponent When we add these terms, we see that: \[ a^3 - b^3 + b^3 - c^3 + c^3 - a^3 = 0 \] Thus, the exponent simplifies to \(0\). ### Step 7: Final result Since \(x^0 = 1\) for any non-zero \(x\), we conclude that: \[ \left(\frac{x^a}{x^b}\right)^{a^2 + ab + b^2} \left(\frac{x^b}{x^c}\right)^{b^2 + bc + c^2} \left(\frac{x^c}{x^a}\right)^{c^2 + ca + a^2} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Simplify :((x^(a))/(x^(b)))^(a^(2)+b^(2)+ab)xx((x^(b))/(x^(c)))^(b^(2)+c^(2)+bc)xx((x^(c))/(x^(a)))^(c^(2)+a^(2))

((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))times((x^(b))/(x^(-c)))^(b^(2)-bc+c^(2))times((x^(c))/(x^(-a)))^(c^(2)-ca+a^(2))

Prove that: ((x^(a))/(x^(b)))^(a)-2+ab+b^(2)x((x6b)/(x^(c)))^(b)-2+bc+c^(2)x((x^(c))/(x^(a)))^(c)-2+ca+a^(2)

On simplification [((x)^(ab))/((x)^(a^(2)+b^(2)))]^(a+b)*[((x)^(b^(2)+c^(2)))/((x)^(bc))]^(b+c)*[((x)^(ca))/((x)^(c^(2)+a^(2)))]^(c+) reduces to

On simplification [((x)^(ab))/((x)^(a^(2)+b^(2)))]^(a+b)*[((x)^(b^(2)+c^(2)))/((x)^(bc))]^(b+c)*[((x)^(ca))/((x)^(c^(2)+a^(2)))]^(c+) reduces to

((x^(a))/(x^(b)))^(a+b-c)*((x^(b))/(x^(c)))^(b+c-a)*((x^(c))/(x^(a)))^(c+a-b)= a.1 b.x^(abc) c.x^(ab+bc+ca) d.x^(a+b+c)

Show that: (x^(a(b-c)))/(x^(b(a-c)))-:((x^(b))/(x^(a)))^(c)=1((x^(a+b))(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

Show that : (x^(a(b-c)))/(x^(b(a-c)))*(x^(b))/(x^(a)))^(c)=1((x^(a+b))^(2)(x^(b+c))(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Test Yourself
  1. 2xx(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))=?

    Text Solution

    |

  2. ((x^a)/(x^b))^(1//ab)xx((x^b)/(x^c))^(1//bc)xx((x^c)/(x^a))^(1//ca)=?

    Text Solution

    |

  3. ((x^(a))/(x^(b)))^(a^(2)+ab+b^(2))((x^(b))/(x^(c )))^(b^(2)+bc+c^(2))(...

    Text Solution

    |

  4. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  5. Find the value of a and b in the following equation. (5+sqrt(3))/(7-...

    Text Solution

    |

  6. Simplify the following equation : (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/...

    Text Solution

    |

  7. If (7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+7sqrt(5)b, determ...

    Text Solution

    |

  8. Simplify : (6)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3...

    Text Solution

    |

  9. Given sqrt(2)=1.4142, find correct to three places of decimal the valu...

    Text Solution

    |

  10. If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  11. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), then find the va...

    Text Solution

    |

  12. Find the positive square root of 14sqrt(5)-30

    Text Solution

    |

  13. Simplify : sqrt(((6+2sqrt(3))/(33-19sqrt(3))))

    Text Solution

    |

  14. Simplify : (4sqrt(3))/(2-sqrt(2))-(30)/(4sqrt(3)-sqrt(18))-(sqrt(18)...

    Text Solution

    |

  15. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  16. Find the value of (sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1...

    Text Solution

    |

  17. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  18. The value of : sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3)))) is

    Text Solution

    |

  19. a,b,c,p are rational numbers where p is a not a perfect cube. If a+bp...

    Text Solution

    |

  20. What will come in place of both the question marks ? In the following ...

    Text Solution

    |