Home
Class 14
MATHS
Simplify : (6)/(2sqrt(3)-sqrt(6))+(sqrt(...

Simplify : `(6)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3))/(sqrt(6)-sqrt(2))`

A

`2`

B

`-1`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{6}{2\sqrt{3} - \sqrt{6}} + \frac{\sqrt{6}}{\sqrt{3} + \sqrt{2}} - \frac{4\sqrt{3}}{\sqrt{6} - \sqrt{2}}, \] we will handle each term separately by rationalizing the denominators. ### Step 1: Simplify the first term The first term is \[ \frac{6}{2\sqrt{3} - \sqrt{6}}. \] To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \(2\sqrt{3} + \sqrt{6}\): \[ \frac{6(2\sqrt{3} + \sqrt{6})}{(2\sqrt{3} - \sqrt{6})(2\sqrt{3} + \sqrt{6})}. \] The denominator simplifies as follows: \[ (2\sqrt{3})^2 - (\sqrt{6})^2 = 12 - 6 = 6. \] Thus, the first term becomes: \[ \frac{6(2\sqrt{3} + \sqrt{6})}{6} = 2\sqrt{3} + \sqrt{6}. \] ### Step 2: Simplify the second term The second term is \[ \frac{\sqrt{6}}{\sqrt{3} + \sqrt{2}}. \] We rationalize the denominator by multiplying by the conjugate \(\sqrt{3} - \sqrt{2}\): \[ \frac{\sqrt{6}(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}. \] The denominator simplifies as follows: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1. \] Thus, the second term simplifies to: \[ \sqrt{6}(\sqrt{3} - \sqrt{2}) = \sqrt{18} - \sqrt{12} = 3\sqrt{2} - 2\sqrt{3}. \] ### Step 3: Simplify the third term The third term is \[ -\frac{4\sqrt{3}}{\sqrt{6} - \sqrt{2}}. \] We rationalize the denominator by multiplying by the conjugate \(\sqrt{6} + \sqrt{2}\): \[ -\frac{4\sqrt{3}(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})}. \] The denominator simplifies as follows: \[ (\sqrt{6})^2 - (\sqrt{2})^2 = 6 - 2 = 4. \] Thus, the third term simplifies to: \[ -\frac{4\sqrt{3}(\sqrt{6} + \sqrt{2})}{4} = -\sqrt{3}(\sqrt{6} + \sqrt{2}) = -\sqrt{18} - \sqrt{6} = -3\sqrt{2} - \sqrt{6}. \] ### Step 4: Combine all terms Now we combine all simplified terms: \[ (2\sqrt{3} + \sqrt{6}) + (3\sqrt{2} - 2\sqrt{3}) - (3\sqrt{2} + \sqrt{6}). \] Combining like terms: - The \(\sqrt{3}\) terms: \(2\sqrt{3} - 2\sqrt{3} = 0\). - The \(\sqrt{6}\) terms: \(\sqrt{6} - \sqrt{6} = 0\). - The \(\sqrt{2}\) terms: \(3\sqrt{2} - 3\sqrt{2} = 0\). Thus, the entire expression simplifies to: \[ 0. \] ### Final Answer The simplified expression is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(6implify:)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3))/(sqrt(6)-sqrt(2))

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

(3+sqrt(6))/(sqrt(3)+sqrt(2))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(2sqrt(3))/(sqrt(6)+2)

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))

(2sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3))-(8sqrt(3))/(sqrt(6)+sqrt(2))

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

If a=(4sqrt(6))/(sqrt(2)+sqrt(3))

(22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)(2)(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Test Yourself
  1. 2xx(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))=?

    Text Solution

    |

  2. ((x^a)/(x^b))^(1//ab)xx((x^b)/(x^c))^(1//bc)xx((x^c)/(x^a))^(1//ca)=?

    Text Solution

    |

  3. ((x^(a))/(x^(b)))^(a^(2)+ab+b^(2))((x^(b))/(x^(c )))^(b^(2)+bc+c^(2))(...

    Text Solution

    |

  4. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  5. Find the value of a and b in the following equation. (5+sqrt(3))/(7-...

    Text Solution

    |

  6. Simplify the following equation : (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/...

    Text Solution

    |

  7. If (7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+7sqrt(5)b, determ...

    Text Solution

    |

  8. Simplify : (6)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3...

    Text Solution

    |

  9. Given sqrt(2)=1.4142, find correct to three places of decimal the valu...

    Text Solution

    |

  10. If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  11. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), then find the va...

    Text Solution

    |

  12. Find the positive square root of 14sqrt(5)-30

    Text Solution

    |

  13. Simplify : sqrt(((6+2sqrt(3))/(33-19sqrt(3))))

    Text Solution

    |

  14. Simplify : (4sqrt(3))/(2-sqrt(2))-(30)/(4sqrt(3)-sqrt(18))-(sqrt(18)...

    Text Solution

    |

  15. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  16. Find the value of (sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1...

    Text Solution

    |

  17. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  18. The value of : sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3)))) is

    Text Solution

    |

  19. a,b,c,p are rational numbers where p is a not a perfect cube. If a+bp...

    Text Solution

    |

  20. What will come in place of both the question marks ? In the following ...

    Text Solution

    |