Home
Class 14
MATHS
If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))...

If `x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))` and `y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))` find the value of `x^(3)+y^(3)`

A

`807`

B

`907`

C

`970`

D

`870`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + y^3 \) given: \[ x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \] \[ y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] ### Step 1: Find \( x + y \) To find \( x + y \), we add the two fractions: \[ x + y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] To add these fractions, we need a common denominator, which is \( (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) \). ### Step 2: Calculate the common denominator The common denominator simplifies as follows: \[ (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 3 - 2 = 1 \] ### Step 3: Combine the fractions Now we can combine the fractions: \[ x + y = \frac{(\sqrt{3} - \sqrt{2})^2 + (\sqrt{3} + \sqrt{2})^2}{1} \] ### Step 4: Expand the numerators Now we expand both squares: \[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6} \] \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] ### Step 5: Add the expanded forms Adding these two results: \[ x + y = (5 - 2\sqrt{6}) + (5 + 2\sqrt{6}) = 10 \] ### Step 6: Find \( xy \) Next, we find \( xy \): \[ xy = \left(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right) \left(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right) = 1 \] ### Step 7: Use the identity for \( x^3 + y^3 \) We can use the identity: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] We already have \( x + y = 10 \) and \( xy = 1 \). Now we need \( x^2 + y^2 \): \[ x^2 + y^2 = (x + y)^2 - 2xy = 10^2 - 2 \cdot 1 = 100 - 2 = 98 \] ### Step 8: Substitute into the identity Now we substitute into the identity: \[ x^3 + y^3 = (x + y)((x^2 + y^2) - xy) = 10(98 - 1) = 10 \cdot 97 = 970 \] ### Final Answer Thus, the value of \( x^3 + y^3 \) is: \[ \boxed{970} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then the value of x^(2)+xy+y^(2)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), find the value of a^(2)+ab+b^(2)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), find x^(2)+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))"and"y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then x^2+xy+y^2=

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Test Yourself
  1. 2xx(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))=?

    Text Solution

    |

  2. ((x^a)/(x^b))^(1//ab)xx((x^b)/(x^c))^(1//bc)xx((x^c)/(x^a))^(1//ca)=?

    Text Solution

    |

  3. ((x^(a))/(x^(b)))^(a^(2)+ab+b^(2))((x^(b))/(x^(c )))^(b^(2)+bc+c^(2))(...

    Text Solution

    |

  4. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  5. Find the value of a and b in the following equation. (5+sqrt(3))/(7-...

    Text Solution

    |

  6. Simplify the following equation : (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/...

    Text Solution

    |

  7. If (7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+7sqrt(5)b, determ...

    Text Solution

    |

  8. Simplify : (6)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3...

    Text Solution

    |

  9. Given sqrt(2)=1.4142, find correct to three places of decimal the valu...

    Text Solution

    |

  10. If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  11. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), then find the va...

    Text Solution

    |

  12. Find the positive square root of 14sqrt(5)-30

    Text Solution

    |

  13. Simplify : sqrt(((6+2sqrt(3))/(33-19sqrt(3))))

    Text Solution

    |

  14. Simplify : (4sqrt(3))/(2-sqrt(2))-(30)/(4sqrt(3)-sqrt(18))-(sqrt(18)...

    Text Solution

    |

  15. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  16. Find the value of (sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1...

    Text Solution

    |

  17. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  18. The value of : sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3)))) is

    Text Solution

    |

  19. a,b,c,p are rational numbers where p is a not a perfect cube. If a+bp...

    Text Solution

    |

  20. What will come in place of both the question marks ? In the following ...

    Text Solution

    |