Home
Class 14
MATHS
Simplify : sqrt(((6+2sqrt(3))/(33-19sqrt...

Simplify : `sqrt(((6+2sqrt(3))/(33-19sqrt(3))))`

A

`5-2sqrt(3)`

B

`5+2sqrt(3)`

C

`5-3sqrt(3)`

D

`5+3sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{\frac{6 + 2\sqrt{3}}{33 - 19\sqrt{3}}} \), we will follow these steps: ### Step 1: Rationalize the Denominator We start by rationalizing the denominator. We can multiply both the numerator and the denominator by the conjugate of the denominator, which is \( 33 + 19\sqrt{3} \). \[ \sqrt{\frac{(6 + 2\sqrt{3})(33 + 19\sqrt{3})}{(33 - 19\sqrt{3})(33 + 19\sqrt{3})}} \] ### Step 2: Simplify the Denominator Next, we simplify the denominator using the difference of squares formula: \[ (33 - 19\sqrt{3})(33 + 19\sqrt{3}) = 33^2 - (19\sqrt{3})^2 = 1089 - 1083 = 6 \] ### Step 3: Expand the Numerator Now, we will expand the numerator: \[ (6 + 2\sqrt{3})(33 + 19\sqrt{3}) = 6 \cdot 33 + 6 \cdot 19\sqrt{3} + 2\sqrt{3} \cdot 33 + 2\sqrt{3} \cdot 19\sqrt{3} \] Calculating each term: - \( 6 \cdot 33 = 198 \) - \( 6 \cdot 19\sqrt{3} = 114\sqrt{3} \) - \( 2\sqrt{3} \cdot 33 = 66\sqrt{3} \) - \( 2\sqrt{3} \cdot 19\sqrt{3} = 38 \cdot 3 = 114 \) Adding these together: \[ 198 + (114\sqrt{3} + 66\sqrt{3}) + 114 = 198 + 180\sqrt{3} + 114 = 312 + 180\sqrt{3} \] ### Step 4: Combine the Results Now we can combine the results: \[ \sqrt{\frac{312 + 180\sqrt{3}}{6}} = \sqrt{52 + 30\sqrt{3}} \] ### Step 5: Express as a Perfect Square Next, we will express \( 52 + 30\sqrt{3} \) as a perfect square. We can assume it is of the form \( (a + b\sqrt{3})^2 \). Expanding \( (a + b\sqrt{3})^2 \): \[ a^2 + 2ab\sqrt{3} + 3b^2 \] We need to match coefficients: 1. \( a^2 + 3b^2 = 52 \) 2. \( 2ab = 30 \) From the second equation, we can express \( ab \): \[ ab = 15 \implies b = \frac{15}{a} \] Substituting \( b \) in the first equation: \[ a^2 + 3\left(\frac{15}{a}\right)^2 = 52 \] This simplifies to: \[ a^2 + \frac{675}{a^2} = 52 \] Multiplying through by \( a^2 \): \[ a^4 - 52a^2 + 675 = 0 \] Let \( x = a^2 \): \[ x^2 - 52x + 675 = 0 \] Using the quadratic formula: \[ x = \frac{52 \pm \sqrt{52^2 - 4 \cdot 675}}{2} \] Calculating the discriminant: \[ 52^2 - 2700 = 2704 - 2700 = 4 \] Thus: \[ x = \frac{52 \pm 2}{2} = 26 \pm 1 \] So, \( x = 27 \) or \( x = 25 \). Therefore, \( a^2 = 27 \) or \( a^2 = 25 \). Taking square roots: - If \( a = 5 \), then \( b = 3 \). - If \( a = 3\sqrt{3} \), then \( b = 5/\sqrt{3} \) (not applicable here). Thus, we have: \[ \sqrt{52 + 30\sqrt{3}} = 5 + 3\sqrt{3} \] ### Final Answer Finally, we take the square root: \[ \sqrt{52 + 30\sqrt{3}} = 5 + 3\sqrt{3} \] So, the simplified expression is: \[ \boxed{5 + 3\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Simplify : sqrt(3+2sqrt(2))

Simplify: sqrt(3-2sqrt(2))

Simplify (sqrt(3)+2)(sqrt(3)-2)

Simplify : 4sqrt(2)-2sqrt(8)+(3)/(sqrt(2))

Simplify sqrt(3+2sqrt(2))

Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(2sqrt(3))/(sqrt(6)+2)

Simplify 6sqrt(3)+ 5sqrt(12)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Test Yourself
  1. 2xx(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))=?

    Text Solution

    |

  2. ((x^a)/(x^b))^(1//ab)xx((x^b)/(x^c))^(1//bc)xx((x^c)/(x^a))^(1//ca)=?

    Text Solution

    |

  3. ((x^(a))/(x^(b)))^(a^(2)+ab+b^(2))((x^(b))/(x^(c )))^(b^(2)+bc+c^(2))(...

    Text Solution

    |

  4. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  5. Find the value of a and b in the following equation. (5+sqrt(3))/(7-...

    Text Solution

    |

  6. Simplify the following equation : (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/...

    Text Solution

    |

  7. If (7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+7sqrt(5)b, determ...

    Text Solution

    |

  8. Simplify : (6)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3...

    Text Solution

    |

  9. Given sqrt(2)=1.4142, find correct to three places of decimal the valu...

    Text Solution

    |

  10. If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  11. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), then find the va...

    Text Solution

    |

  12. Find the positive square root of 14sqrt(5)-30

    Text Solution

    |

  13. Simplify : sqrt(((6+2sqrt(3))/(33-19sqrt(3))))

    Text Solution

    |

  14. Simplify : (4sqrt(3))/(2-sqrt(2))-(30)/(4sqrt(3)-sqrt(18))-(sqrt(18)...

    Text Solution

    |

  15. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  16. Find the value of (sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1...

    Text Solution

    |

  17. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  18. The value of : sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3)))) is

    Text Solution

    |

  19. a,b,c,p are rational numbers where p is a not a perfect cube. If a+bp...

    Text Solution

    |

  20. What will come in place of both the question marks ? In the following ...

    Text Solution

    |