Home
Class 14
MATHS
If a: b = 2/9 : 1/3, b: c = 2/7 : 5/14 ...

If `a: b = 2/9 : 1/3, b: c = 2/7 : 5/14` and `d : c = 7/10 : 3/5` then `a : b :c : d` is:

A

`4:6 : 7 : 9`

B

`16 : 24 : 30 : 35`

C

`8 : 12 : 15 : 7`

D

`30 : 35 : 24 : 16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the ratio \( a : b : c : d \) given the ratios \( a : b = \frac{2}{9} : \frac{1}{3} \), \( b : c = \frac{2}{7} : \frac{5}{14} \), and \( d : c = \frac{7}{10} : \frac{3}{5} \), we will follow these steps: ### Step 1: Simplify the ratios 1. **Convert the ratios to a common format**: - For \( a : b = \frac{2}{9} : \frac{1}{3} \): \[ a : b = \frac{2}{9} : \frac{1}{3} = \frac{2}{9} : \frac{3}{9} = 2 : 3 \] - For \( b : c = \frac{2}{7} : \frac{5}{14} \): \[ b : c = \frac{2}{7} : \frac{5}{14} = \frac{2}{7} : \frac{5 \times 2}{14 \times 2} = 2 : 5 \] - For \( d : c = \frac{7}{10} : \frac{3}{5} \): \[ d : c = \frac{7}{10} : \frac{3}{5} = \frac{7}{10} : \frac{6}{10} = 7 : 6 \] ### Step 2: Express all ratios in terms of a common variable 2. **Let’s express \( a, b, c, d \) using a common variable**: - From \( a : b = 2 : 3 \), we can write: \[ a = 2k \quad \text{and} \quad b = 3k \] - From \( b : c = 2 : 5 \), we can express \( c \) in terms of \( b \): \[ b = 3k \implies 3k : c = 2 : 5 \implies c = \frac{5}{2} \times 3k = \frac{15k}{2} \] - From \( d : c = 7 : 6 \), we can express \( d \) in terms of \( c \): \[ c = \frac{15k}{2} \implies d : \frac{15k}{2} = 7 : 6 \implies d = \frac{7}{6} \times \frac{15k}{2} = \frac{105k}{12} = \frac{35k}{4} \] ### Step 3: Find a common multiple to express all ratios 3. **Finding a common multiple**: - The ratios are now: \[ a = 2k, \quad b = 3k, \quad c = \frac{15k}{2}, \quad d = \frac{35k}{4} \] - To eliminate fractions, we can multiply each term by 4 (the least common multiple of the denominators): \[ a = 8k, \quad b = 12k, \quad c = 30k, \quad d = 35k \] ### Step 4: Write the final ratio 4. **Final ratio**: - Thus, the final ratio \( a : b : c : d \) is: \[ a : b : c : d = 8k : 12k : 30k : 35k = 8 : 12 : 30 : 35 \] - To simplify this, we can divide each term by their greatest common divisor (1 in this case): \[ 8 : 12 : 30 : 35 \] ### Final Answer The final ratio \( a : b : c : d \) is: \[ 8 : 12 : 30 : 35 \]
Promotional Banner

Topper's Solved these Questions

  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TYPE-IV|30 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TYPE-V|64 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TYPE-II|49 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TEST YOURSELF |20 Videos

Similar Questions

Explore conceptually related problems

If a: b = (2)/(9) : (1)/(3) , b: c = (2)/(7) : (5)/(14) and d : c = ( 7)/(10) : (3)/(5) , then find a : b: c: d .

If a : b = 2 : 5, b : c = 4 : 7 and c : d = 9 : 14, then the value of a : b : c : d is : यदि a : b = 2 : 5, b : c = 4 : 7 और c : d = 9 : 14, तो a : b : c : d कितना है ?

If a:b=(2)/(9):(1)/(3),b:c=(2)/(7):(5)/(14) and d:c=(7)/(10):(3)/(5), then find a:b:c:d

If a : b = 3 : 7 and b : c = 14 : 5, then find a : b : c.

If a : b = 3 : 7 and b : c = 14 : 5, then find a : b : c.

If a : b = 2:3, b: c= 4:5 and c:d=6:7, then a:d=

If A : B = 5 : 2, B : C = 2 : 3 and C: D = 5: 3 , then the ratio A: B : C : D is

KIRAN PUBLICATION-RATIO AND PROPORTION -TYPE-III
  1. If m : n = 3 : 2, then (4m + 5n): (4m - 5n) Is equal to:

    Text Solution

    |

  2. If A: B = 3 : 4, B : C = 5 : 7 and C: D = 8:9 then A: D is equal to

    Text Solution

    |

  3. If a: b = 2/9 : 1/3, b: c = 2/7 : 5/14 and d : c = 7/10 : 3/5 then a ...

    Text Solution

    |

  4. If b is the mean proportional of a and c, then (a - b)^3 : (b - c)^3 e...

    Text Solution

    |

  5. Rs 6200 divided into three parts proportional to 1/2 : 1/3 : 1/5 are ...

    Text Solution

    |

  6. 94 Is divided Into two parts in such a way that the fifth part of the ...

    Text Solution

    |

  7. If a: b= 5:7 and c:d=2a:3b, then ac: bd is :

    Text Solution

    |

  8. If x: y = 3 : 2, then the ratio 2x^(2) + 3y^(2) : 3x^(2) - 2y^(2) is ...

    Text Solution

    |

  9. If a : b = b : c, then a^4 : b^4 is equal to:

    Text Solution

    |

  10. If A : B : C = 2 : 3 : 4, then ratio A/B : B/C : C/A is equal to:

    Text Solution

    |

  11. If a: b= c:d = e:f = 1:2, then ( 3a + 5c +7e): (3b + 5d + 7 J) is equa...

    Text Solution

    |

  12. If a: (b+c) = 1:3 and c: (a+ b) = 5:7, then b: (a+c) is equal to:

    Text Solution

    |

  13. If l:m:n=1:2:4, then sqrt (5l^2+ m^2+n^2) is equal to : यदि l:m:n=1:...

    Text Solution

    |

  14. The mean proportional between (3+sqrt(2)) and (12 - sqrt(32)) is:

    Text Solution

    |

  15. If x: y = 2 : 3, then the value of (3x + 2y)/(x + 5y) is equal to

    Text Solution

    |

  16. If a : b : c = 2 : 3 : 4 and 2a -3b + 4c = 33, then the value of c is:

    Text Solution

    |

  17. If a : b = c : d, then (ma + nc)/(mb + nd) is not equal to:

    Text Solution

    |

  18. The ratio of A to B is 4 : 5 and that of B to C is 2 : 3. If A equals ...

    Text Solution

    |

  19. If a : b : c = 7 : 3 : 5, then (a+ b + c): (2a+ b- c) is equal to

    Text Solution

    |

  20. If two times of A is equal to three times of B and also equal to four ...

    Text Solution

    |