Home
Class 14
MATHS
When simplified the sum 1/2+1/6+1/12+1/2...

When simplified the sum `1/2+1/6+1/12+1/20+1/30+….+1/(n(n+1))` is equal to

A

`1/n`

B

`1/(n+1)`

C

`(2(n-1))/n`

D

`n/(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the sum \( S = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \ldots + \frac{1}{n(n+1)} \), we can express each term in the series in a different form. ### Step-by-Step Solution: 1. **Identify the general term**: The general term of the series can be expressed as: \[ \frac{1}{n(n+1)} \] 2. **Use partial fractions**: We can decompose the term \( \frac{1}{n(n+1)} \) using partial fractions: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \] 3. **Rewrite the sum**: Substituting the partial fraction decomposition into the sum, we have: \[ S = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \ldots + \left( \frac{1}{n} - \frac{1}{n+1} \right) \] 4. **Observe the telescoping nature**: Notice that this is a telescoping series. Most terms will cancel out: \[ S = 1 - \frac{1}{n+1} \] 5. **Final simplification**: Therefore, the simplified form of the sum is: \[ S = 1 - \frac{1}{n+1} = \frac{n}{n+1} \] ### Final Answer: The sum \( S = \frac{n}{n+1} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE III|9 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE IV|10 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TEST YOURSELF |20 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|19 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

When simplified,the sum (1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)+backslash+(1)/(n(n+1)) is equal to (1)/(n)(b)(1)/(n+1)(c)(n)/(n+1) (d) (2(n-1))/(n)

If N=1/2+1/6+1/12+1/20+1/30+………+1/156 what is the value of N?

Knowledge Check

  • Simplify : 1/2 + 1/6 + 1/(12) + 1/(20)

    A
    `4/5`
    B
    `4/7`
    C
    `3/5`
    D
    `6/7`
  • When simplified the product (1-1/2)(1-1/3) (1-1/4)…….(1-1/n) gives

    A
    `1/n`
    B
    `2/n`
    C
    `(2(n-1))/n`
    D
    `2/(n(n+1))`
  • Find the sum of 1/9+1/6+1/12+1/20+1/30+1/42+1/56+1/72

    A
    `1/2`
    B
    0
    C
    `1/9`
    D
    `1/2520`
  • Similar Questions

    Explore conceptually related problems

    The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to ___.

    When simplified the product (1 - 1/2) (1 - 1/3) (1 - 1/4) .........(1-1/n) gives :

    When simplified the product (1 - (1)/(3)) (1 - (1)/(4)) (1- (1)/(5)) …. (1 - (1)/(n)) becomes :

    When simplified the product (1-1/3)(1-1/4)......(1-1/n) becomes

    (1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…+ (1)/(n (n + 1)) equals