Home
Class 14
MATHS
IF (10^12+25)^2-(10^12-25)^2=10^n then t...

IF `(10^12+25)^2-(10^12-25)^2=10^n` then the value of n is

A

20

B

14

C

10

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((10^{12} + 25)^2 - (10^{12} - 25)^2 = 10^n\), we can use the difference of squares formula. ### Step-by-step Solution: 1. **Identify the Expression**: We have the expression \((10^{12} + 25)^2 - (10^{12} - 25)^2\). 2. **Apply the Difference of Squares Formula**: The difference of squares states that \(a^2 - b^2 = (a - b)(a + b)\). Here, let: - \(a = 10^{12} + 25\) - \(b = 10^{12} - 25\) So, we can rewrite the expression as: \[ (10^{12} + 25 - (10^{12} - 25))((10^{12} + 25) + (10^{12} - 25)) \] 3. **Simplify the Terms**: - The first term simplifies to: \[ (10^{12} + 25) - (10^{12} - 25) = 25 + 25 = 50 \] - The second term simplifies to: \[ (10^{12} + 25) + (10^{12} - 25) = 10^{12} + 25 + 10^{12} - 25 = 2 \cdot 10^{12} \] 4. **Combine the Results**: Now, substituting back into the expression gives: \[ 50 \cdot (2 \cdot 10^{12}) = 100 \cdot 10^{12} \] 5. **Express in Terms of \(10^n\)**: We can rewrite \(100\) as \(10^2\): \[ 100 \cdot 10^{12} = 10^2 \cdot 10^{12} = 10^{2 + 12} = 10^{14} \] 6. **Equate to Find \(n\)**: We have \(10^{14} = 10^n\). Therefore, by comparing the exponents, we find: \[ n = 14 \] ### Final Answer: The value of \(n\) is \(14\).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE IV|10 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE V|19 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE II|42 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|19 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If (10^(12)+25)^(2)-backslash(10^(12)-25)^(2)=10^(n), then the value of n is 5 (b) 10(c)14 (d) 20

If area of an equilateral triangle inscribed in the circle x^(2)+y^(2)+10x+12y+c=0 is 27sqrt(3), then the value of c is (a) 25(b)-25 (c) 36(d)-36

If 2=10^(m) and 3=10^(n) , then find the value of 0.15

If (x+10)^50+(x?10)^50=a_0+a_1 x+a_2x^2+........a_50x^2+...........+a_50x^50 then the value of a0a2 is equal to (A) 12.25 (B) 12.75 (C) 11.75 (D) 11.25

If sqrt(3^(n))=729, then the value of n is (a)6(b)8(c)10(d)12

If (log)_(10)(1025)/(1024)=alphaa n d(log)_(10)2=beta , then the value of (log)_(10)4100 in terms of alphaa n dbeta is equal to alpha+9beta (b) alpha+12beta 12alpha+beta (d) 9alpha+beta

If A = [(-1,2),(3,1)],B=[(1,0),(-1,0)] then the value of 2A+B+2I=

if 25C_(n+5)=25C_(2n-1) then sum of all values of n is: