Home
Class 14
MATHS
For all integral values of n, the larges...

For all integral values of n, the largest number that exactly divides each number of the sequence `(n-1) n(n+1) , n(n+1) (n+2), (n+1) (n+2) (n+3)`…..is

A

12

B

6

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the largest number that exactly divides each number of the sequence given by \((n-1)n(n+1)\), \(n(n+1)(n+2)\), and \((n+1)(n+2)(n+3)\), we can analyze the expressions step by step. ### Step 1: Analyze the expressions The three expressions in the sequence are: 1. \( (n-1)n(n+1) \) 2. \( n(n+1)(n+2) \) 3. \( (n+1)(n+2)(n+3) \) ### Step 2: Factor each expression Let's factor each expression to identify common factors. 1. **First Expression**: \[ (n-1)n(n+1) = n^3 - n \] 2. **Second Expression**: \[ n(n+1)(n+2) = n(n^2 + 3n + 2) = n^3 + 3n^2 + 2n \] 3. **Third Expression**: \[ (n+1)(n+2)(n+3) = (n^2 + 3n + 2)(n + 3) = n^3 + 6n^2 + 11n + 6 \] ### Step 3: Evaluate the expressions for specific values of \(n\) To find the largest common divisor, we can evaluate the expressions for small integral values of \(n\). - **For \(n = 1\)**: - \( (1-1) \cdot 1 \cdot (1+1) = 0 \) - \( 1 \cdot (1+1) \cdot (1+2) = 1 \cdot 2 \cdot 3 = 6 \) - \( (1+1) \cdot (1+2) \cdot (1+3) = 2 \cdot 3 \cdot 4 = 24 \) - **For \(n = 2\)**: - \( (2-1) \cdot 2 \cdot (2+1) = 1 \cdot 2 \cdot 3 = 6 \) - \( 2 \cdot (2+1) \cdot (2+2) = 2 \cdot 3 \cdot 4 = 24 \) - \( (2+1) \cdot (2+2) \cdot (2+3) = 3 \cdot 4 \cdot 5 = 60 \) - **For \(n = 3\)**: - \( (3-1) \cdot 3 \cdot (3+1) = 2 \cdot 3 \cdot 4 = 24 \) - \( 3 \cdot (3+1) \cdot (3+2) = 3 \cdot 4 \cdot 5 = 60 \) - \( (3+1) \cdot (3+2) \cdot (3+3) = 4 \cdot 5 \cdot 6 = 120 \) ### Step 4: Identify the common divisor From our calculations: - For \(n = 1\): The values are \(0, 6, 24\) (ignore 0) - For \(n = 2\): The values are \(6, 24, 60\) - For \(n = 3\): The values are \(24, 60, 120\) The common divisor across these values is \(6\). ### Conclusion The largest number that exactly divides each number of the sequence for all integral values of \(n\) is **6**.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE IV|10 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE V|19 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE II|42 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|19 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

The largest number that exactly divides each number of the form n^3 - n , where n is a natural number , is :

For all values of n, ( n^(3) - n) (n+2) will be exactly divisible by?

Number of integral values of n that satisfies |(3)/(n-1)|>1 is

For natural number n , 2^n (n-1)!lt n^n , if

Find the n^(th) term of the sequence 1/n^2, (1+n^2)/n^2, (1+2n^2)/n^2,...

The sequence where a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+......+(1)/(n+n) is

If [x] denotes the integral part of x and n is a natural number such that 1<=n<100 then the number of solutions of the equation [(n)/(2)]+[(n)/(3)]+[(n)/(5)]=(n)/(2)+(n)/(3)+(n)/(5) is