Home
Class 14
MATHS
Given that 1^(2) + 2^(2) + 3^(2) + ... ...

Given that ` 1^(2) + 2^(2) + 3^(2) + ... + 20^(2) = 2870`, the value of ` (2^(2) + 4^(2) + 6^(2) + ... + 40^(2))` is :

A

11480

B

5740

C

28700

D

2870

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE V|19 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TEST YOURSELF |20 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE III|9 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|19 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

The value of (9^(2)+40^(2))^(3/2)=

Given that (1^(2)+2^(2)+3^(2)+......+10^(2))=385, the value of (2^(2)+4^(2)+6^(2)+....+20^(2)) is equal to

If 1^(2) + 2^(2) + 3^(3)+ 4^(2) + …….. + 10^(2) = 385 then find the value of 2^(2) + 4^(2) + 6^(2) + ………. + 20^(2)

Given that 1^(2) + 2^(2) + 3^(2) + …. + n^(2) = (n)/(6) (n + 1) (2n + 1) , then 10^(2) + 11^(2) + 12^(2) + … + 20^(2) is equal to

IF S=1^(2)+3^(2)+5^(2).....99^(2) then the value of the sum 2^(2)+4^(2)+6^(2)...100^(2)

The value of (1^2 - 2^2 + 3^2 - 4^2 +5^2 -6^2 +.....+ 9^2 - 10^2) is