Home
Class 14
MATHS
IF 1^3+2^3+…….+9^3=2025 then the value o...

IF `1^3+2^3+…….+9^3=2025` then the value of `(0.11)^3 +(0.22)^3+……+(0.99)^3` is close to

A

0.2695

B

2.695

C

3.695

D

0.3695

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (0.11)^3 + (0.22)^3 + \ldots + (0.99)^3 \) given that \( 1^3 + 2^3 + \ldots + 9^3 = 2025 \). ### Step-by-Step Solution: 1. **Understanding the Series**: The series we need to evaluate can be rewritten in terms of fractions: \[ (0.11)^3 + (0.22)^3 + (0.33)^3 + \ldots + (0.99)^3 = \left(\frac{11}{100}\right)^3 + \left(\frac{22}{100}\right)^3 + \ldots + \left(\frac{99}{100}\right)^3 \] 2. **Factoring Out Common Terms**: Notice that each term can be expressed as: \[ \left(\frac{n \cdot 11}{100}\right)^3 \quad \text{for } n = 1, 2, \ldots, 9 \] Thus, we can factor out \( \left(\frac{11}{100}\right)^3 \): \[ \left(\frac{11}{100}\right)^3 \left(1^3 + 2^3 + \ldots + 9^3\right) \] 3. **Substituting the Known Value**: We know from the problem statement that: \[ 1^3 + 2^3 + \ldots + 9^3 = 2025 \] Therefore, substituting this into our expression gives: \[ \left(\frac{11}{100}\right)^3 \cdot 2025 \] 4. **Calculating \( \left(\frac{11}{100}\right)^3 \)**: First, calculate \( 11^3 \): \[ 11^3 = 1331 \] Then, calculate \( 100^3 \): \[ 100^3 = 1000000 \] So, we have: \[ \left(\frac{11}{100}\right)^3 = \frac{1331}{1000000} \] 5. **Final Calculation**: Now, we can combine everything: \[ \frac{1331}{1000000} \cdot 2025 = \frac{1331 \cdot 2025}{1000000} \] 6. **Calculating the Product**: Calculate \( 1331 \cdot 2025 \): \[ 1331 \cdot 2025 = 2694975 \] Therefore: \[ \frac{2694975}{1000000} = 2.694975 \] 7. **Approximating the Result**: The approximate value of \( 2.694975 \) can be rounded to \( 2.69 \). ### Conclusion: Thus, the value of \( (0.11)^3 + (0.22)^3 + \ldots + (0.99)^3 \) is close to **2.69**.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE V|19 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TEST YOURSELF |20 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE III|9 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|19 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If 1^3+2^3+ dot +9^3=2025 , then the value of (0. 11)^3+(0. 22)^3+ dot+(0. 99)^3 is close to (a) 0.2695 (b) 0.3695 (c) 2.695 (d) 3.695

If 1^(3) + 2^(3) +……. + 9^(3) =2025, then the approximate value of (0.11)^(3)+(0.22)^(3) +…..+ (0.99)^(3) is

Evaluate: (0.2)^(3)-(0.3)^(3)+(0.1)^(3)

Value of ( 1^0 + 2^0 + 3^0 ) is

Value of ( 9^0 + 1/ 5^0 )^3 is

the value of 1.1!+ 2.2!+ 3.3!+ ....+ n.n!

If A =((0.1)^3+(0.2)^3+(0.3)^3+3(0.005 + 0.016 + 0.027) + 0.036)/((0.1)^2+(0.2)^2+ (0.3)^2+0.04 + 0.06 + 0.12) ,then the value of 60A is: यदि A =((0.1)^3+(0.2)^3+(0.3)^3+3(0.005 + 0.016 + 0.027) + 0.036)/((0.1)^2+(0.2)^2+ (0.3)^2+0.04 + 0.06 + 0.12) है, तो 60A का मान क्या होगा ?