Home
Class 14
MATHS
1^2-2^2+3^2-4^2+…….-10^2 is equal to...

`1^2-2^2+3^2-4^2+…….-10^2` is equal to

A

45

B

`-45`

C

`-54`

D

`-55`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(1^2 - 2^2 + 3^2 - 4^2 + \ldots - 10^2\), we can group the terms in pairs and use the difference of squares formula. ### Step-by-step Solution: 1. **Group the terms**: We can group the terms in pairs as follows: \[ (1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + (7^2 - 8^2) + (9^2 - 10^2) \] 2. **Apply the difference of squares formula**: Recall that \(a^2 - b^2 = (a + b)(a - b)\). We can apply this to each pair: - For \(1^2 - 2^2\): \[ 1^2 - 2^2 = (1 + 2)(1 - 2) = 3 \cdot (-1) = -3 \] - For \(3^2 - 4^2\): \[ 3^2 - 4^2 = (3 + 4)(3 - 4) = 7 \cdot (-1) = -7 \] - For \(5^2 - 6^2\): \[ 5^2 - 6^2 = (5 + 6)(5 - 6) = 11 \cdot (-1) = -11 \] - For \(7^2 - 8^2\): \[ 7^2 - 8^2 = (7 + 8)(7 - 8) = 15 \cdot (-1) = -15 \] - For \(9^2 - 10^2\): \[ 9^2 - 10^2 = (9 + 10)(9 - 10) = 19 \cdot (-1) = -19 \] 3. **Sum the results**: Now we sum all the results from the pairs: \[ -3 - 7 - 11 - 15 - 19 \] 4. **Calculate the total**: Let's add these values together: - First, add \(-3\) and \(-7\): \[ -3 - 7 = -10 \] - Next, add \(-11\): \[ -10 - 11 = -21 \] - Then, add \(-15\): \[ -21 - 15 = -36 \] - Finally, add \(-19\): \[ -36 - 19 = -55 \] Thus, the final result is: \[ \boxed{-55} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE V|19 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TEST YOURSELF |20 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE III|9 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|19 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

2/3-1/4 is equal to

The value of the determinant =1^2 2^2 3^2 4^2 2^2 3^2 4^25^2 3^2 4^25^2 6^2 4^2 5^2 6^2 7^2 is equal to 1 b. 0 c. 2 d. 3

(1^(2) + 2^(2) + 3^(2) + …. + 10^(2)) is equal to

2^(1/2)*4^(3/4) is equal to

2. | [1 ,1 ,1 ],[4 ,3 ,2], [4^(2) ,3^(2), 2^(2)] | is equal to

Given that (1^(2)+2^(2)+3^(2)+......+10^(2))=385, the value of (2^(2)+4^(2)+6^(2)+....+20^(2)) is equal to

Find [((1)/(2))^(-1)+((2)/(3))^(2)-((3)/(4))^(0)]^(-2) is equal to: