Home
Class 14
MATHS
Given 2^2+4^2+6^2+……+40^2=11480 then the...

Given `2^2+4^2+6^2+……+40^2=11480` then the value of
`1^2+2^2+3^2+…+20^2` is

A

2870

B

2868

C

2867

D

2869

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(1^2 + 2^2 + 3^2 + \ldots + 20^2\), we can use the information given in the question regarding the sum of squares of even numbers. ### Step 1: Understand the given series The series given is: \[ 2^2 + 4^2 + 6^2 + \ldots + 40^2 \] This can be expressed in terms of \(n\) where \(n\) is the number of terms. The even numbers can be represented as \(2n\) where \(n = 1, 2, 3, \ldots, 20\). ### Step 2: Identify the number of terms The last term \(40\) corresponds to \(n = 20\). Therefore, there are \(20\) terms in this series. ### Step 3: Write the sum of squares of even numbers The sum of squares of the first \(n\) even numbers can be calculated using the formula: \[ \text{Sum} = 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = 4(1^2 + 2^2 + 3^2 + \ldots + n^2) \] Thus, we can express the sum as: \[ 2^2 + 4^2 + 6^2 + \ldots + 40^2 = 4(1^2 + 2^2 + 3^2 + \ldots + 20^2) \] ### Step 4: Set up the equation Given that: \[ 2^2 + 4^2 + 6^2 + \ldots + 40^2 = 11480 \] We can substitute this into our equation: \[ 4(1^2 + 2^2 + 3^2 + \ldots + 20^2) = 11480 \] ### Step 5: Solve for \(1^2 + 2^2 + 3^2 + \ldots + 20^2\) Now, divide both sides by \(4\): \[ 1^2 + 2^2 + 3^2 + \ldots + 20^2 = \frac{11480}{4} = 2870 \] ### Final Answer Thus, the value of \(1^2 + 2^2 + 3^2 + \ldots + 20^2\) is: \[ \boxed{2870} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE V|19 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TEST YOURSELF |20 Videos
  • SEQUENCE AND SERIES

    KIRAN PUBLICATION|Exercise TYPE III|9 Videos
  • RATIO AND PROPORTION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|19 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

Find the value of 6^2+7^2+8^2+......+20^2

If 1^(2) + 2^(2) + 3^(3)+ 4^(2) + …….. + 10^(2) = 385 then find the value of 2^(2) + 4^(2) + 6^(2) + ………. + 20^(2)

Given that 1^(2) + 2^(2) + 3^(2) + ... + 20^(2) = 2870 , the value of (2^(2) + 4^(2) + 6^(2) + ... + 40^(2)) is :

The value of 1 + 2^2 + 2^3 + 2^4 + ……+ 2^9 is ______

The value of (9^(2)+40^(2))^(3/2)=

Given that (1^(2)+2^(2)+3^(2)+..20^(2))=2870, the value of (2^(2)+4^(2)+6^(2)++40^(2)) is 2870 (b) 5740(c)11480(d)28700