Home
Class 14
MATHS
If log (0.57) = 0. 756 then the value of...

If `log (0.57) = 0. 756` then the value of `log 57 + log (0.57)^(3) + log sqrt(0.57)`` (-9)/(2)` is :

A

0.902

B

1.902

C

1.146

D

2.146

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the properties of logarithms. Let's break it down step by step. ### Step 1: Rewrite the expression We start with the expression we need to evaluate: \[ \log 57 + \log (0.57)^3 + \log \sqrt{0.57}^{-9/2} \] Using the property of logarithms that states \(\log a + \log b = \log(ab)\), we can combine the logarithms: \[ \log(57 \cdot (0.57)^3 \cdot \sqrt{0.57}^{-9/2}) \]
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-II |3 Videos
  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-III |3 Videos
  • MENSURATION

    KIRAN PUBLICATION|Exercise Test Yourself|28 Videos
  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If log(0.57)=bar(1.756), then the value of log57+log(0.57)^(3)+log backslash sqrt(0.57) is a.0.902 b.1.902 c.bar(2.146)d.bar(1.146)

Find the value of log 36, log 3600 and log 0.0036.

The value of sqrt(4 xx "log"_(0.5)2) , is

If log2=0.3010andlog3=0.4771 , find the value of log 5

If logA=4,Z=0.3 and log C=0.8 . Find the value of log S .