Home
Class 14
MATHS
If log(10)2 = 0.3010 and log(10)7 = 0.8...

If `log_(10)2 = 0.3010 and log_(10)7 = 0.8451,` then the value of `log_(10)2.8` is :

A

A)0.4471

B

B)1.4471

C

C)2.4471

D

D)3.4471

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{10} 2.8 \), we can use the properties of logarithms and the values given in the problem. ### Step-by-Step Solution: 1. **Express \( \log_{10} 2.8 \) in terms of known logarithms**: \[ \log_{10} 2.8 = \log_{10} \left(\frac{28}{10}\right) \] Using the property of logarithms that states \( \log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c \): \[ \log_{10} 2.8 = \log_{10} 28 - \log_{10} 10 \] 2. **Simplify \( \log_{10} 10 \)**: Since \( \log_{10} 10 = 1 \), we have: \[ \log_{10} 2.8 = \log_{10} 28 - 1 \] 3. **Express \( \log_{10} 28 \)**: We can express 28 as \( 2^2 \times 7 \): \[ \log_{10} 28 = \log_{10} (2^2 \times 7) \] Using the property \( \log_a (b \times c) = \log_a b + \log_a c \): \[ \log_{10} 28 = \log_{10} (2^2) + \log_{10} 7 \] 4. **Apply the power rule of logarithms**: The power rule states \( \log_a (b^n) = n \cdot \log_a b \): \[ \log_{10} (2^2) = 2 \cdot \log_{10} 2 \] Therefore: \[ \log_{10} 28 = 2 \cdot \log_{10} 2 + \log_{10} 7 \] 5. **Substitute the known values**: We know that \( \log_{10} 2 = 0.3010 \) and \( \log_{10} 7 = 0.8451 \): \[ \log_{10} 28 = 2 \cdot 0.3010 + 0.8451 \] 6. **Calculate \( \log_{10} 28 \)**: \[ \log_{10} 28 = 0.6020 + 0.8451 = 1.4471 \] 7. **Substitute back to find \( \log_{10} 2.8 \)**: Now, substituting back into the equation for \( \log_{10} 2.8 \): \[ \log_{10} 2.8 = 1.4471 - 1 = 0.4471 \] ### Final Answer: Thus, the value of \( \log_{10} 2.8 \) is: \[ \boxed{0.4471} \]
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-II |3 Videos
  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-III |3 Videos
  • MENSURATION

    KIRAN PUBLICATION|Exercise Test Yourself|28 Videos
  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If log_(10)2 = 0.3010 and log_(10)3 = 0.4771 , then find the value log_(10) 135 .

If log_(10) 2 = 0.030103, log_(10) 50 =

If log _(10)2=0.3010 and log_(10)3=0.4771 ,find the value of log_(10)(2.25)

If log_(10) 2 = 0.3010 & log_(10) 3 = 0.4771 , find the value of log _(10) (2.25) .

If log_(10)2= 0.3010 and log_(10)3= 0.4771 , then the value of log_(10)((2^(3) xx 3^(2))/(5^(2))) is

If log_(10)2 = 0.3010 , then log_(10) 2000 =

If log_(10) 2=0.3010 then log_2 10=

The value of log_(10)0.0001 is

If log_(10)2=0.3010 , then the value of log_(10)80 is