Home
Class 14
MATHS
If log(10)2 = 0.3010 is given then log(2...

If `log_(10)2 = 0.3010` is given then `log_(2) 10` is equal to :

A

0.301

B

`0.6990`

C

`(1000)/(301)`

D

`(699)/(301)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{2} 10 \) given that \( \log_{10} 2 = 0.3010 \), we can use the change of base formula for logarithms. The change of base formula states that: \[ \log_{b} a = \frac{1}{\log_{a} b} \] ### Step-by-Step Solution: 1. **Identify the given value**: We know that \( \log_{10} 2 = 0.3010 \). 2. **Apply the change of base formula**: We want to find \( \log_{2} 10 \). According to the change of base formula, we can express this as: \[ \log_{2} 10 = \frac{1}{\log_{10} 2} \] 3. **Substitute the known value**: Now, substitute the value of \( \log_{10} 2 \) into the equation: \[ \log_{2} 10 = \frac{1}{0.3010} \] 4. **Calculate the result**: Now we perform the division: \[ \log_{2} 10 \approx 3.32 \] Thus, the value of \( \log_{2} 10 \) is approximately \( 3.32 \).
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-II |3 Videos
  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-III |3 Videos
  • MENSURATION

    KIRAN PUBLICATION|Exercise Test Yourself|28 Videos
  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If log_(10)2 = 0.3010 , then log_(10) 2000 =

If "log"_(10) 2 = 0.3010, "then log"_(5) 64=

If log_(10)2=0.3010 , then the value of log_(10)80 is

If log_(10)2= 0.3010 , then log_(10)5 = _______

If log_(10)2=0.30103, find the value of log_(10)50.

If log_(10) 2=0.3010 then log_2 10=