Home
Class 14
MATHS
The simplified form of (log ""(75)/(1...

The simplified form of
`(log ""(75)/(16) -2 log""(5)/(9) + log ""(32)/(243))` is :

A

`log 2`

B

`2 log 2`

C

`log 3`

D

`log 5`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \log \left( \frac{75}{16} \right) - 2 \log \left( \frac{5}{9} \right) + \log \left( \frac{32}{243} \right) \), we can follow these steps: ### Step 1: Apply the properties of logarithms We start with the expression: \[ \log \left( \frac{75}{16} \right) - 2 \log \left( \frac{5}{9} \right) + \log \left( \frac{32}{243} \right) \] Using the property \( n \log(a) = \log(a^n) \), we can rewrite \( -2 \log \left( \frac{5}{9} \right) \) as: \[ - \log \left( \left( \frac{5}{9} \right)^2 \right) \] Thus, the expression becomes: \[ \log \left( \frac{75}{16} \right) - \log \left( \left( \frac{5}{9} \right)^2 \right) + \log \left( \frac{32}{243} \right) \] ### Step 2: Combine the logarithms Using the property \( \log(a) - \log(b) = \log \left( \frac{a}{b} \right) \), we can combine the first two logarithms: \[ \log \left( \frac{75}{16} \cdot \frac{9^2}{5^2} \right) + \log \left( \frac{32}{243} \right) \] This simplifies to: \[ \log \left( \frac{75 \cdot 81}{16 \cdot 25} \right) + \log \left( \frac{32}{243} \right) \] ### Step 3: Further simplify Now we can combine the two logarithms: \[ \log \left( \frac{75 \cdot 81 \cdot 32}{16 \cdot 25 \cdot 243} \right) \] ### Step 4: Calculate the values Calculating the numerator: \[ 75 \cdot 81 \cdot 32 = 75 \cdot 32 \cdot 81 = 2400 \cdot 81 = 194400 \] Calculating the denominator: \[ 16 \cdot 25 \cdot 243 = 400 \cdot 243 = 97200 \] ### Step 5: Final simplification Now we have: \[ \log \left( \frac{194400}{97200} \right) \] Calculating the fraction: \[ \frac{194400}{97200} = 2 \] ### Final Answer Thus, we have: \[ \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-II |3 Videos
  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-III |3 Videos
  • MENSURATION

    KIRAN PUBLICATION|Exercise Test Yourself|28 Videos
  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

Simplify :log backslash(75)/(16)-2log backslash(5)/(9)+log backslash(32)/(243)

Find the value of "log"(9)/(8)-"log"(27)/(32)+"log"(3)/(4)

Simplify: log((3)/(8)) + log ((45)/(8)) - log ((15)/(16)) .

The simplified value of the expression : 2^(log_(3)5)*2^(log_(3)5^(2)) - 5^(log_(3)2)*25^((log_(3)2)) is

3log_(2)((8)/(15))+2log_(2)((25)/(3))+log_(2)((243)/(80)) equals

Which of the following when simplified reduces to an integer? a.(2log6)/(log12+log3)b(log32)/(log4)c*((log)_(5)15-(log)_(5)4)/((log)_(5)128)d(log)_(1/4)((1)/(16))^(2)

log((9)/(14))+log((35)/(24))-log((15)/(16))=0