Home
Class 14
MATHS
The amount of extension in a spring is p...

The amount of extension in a spring is proportional to the weight hung on it. If the weight of 5 kgs produces an extension of 0.4 cm, what weight would produce an extension of 5 cm ?

A

A)6.25 kgs

B

B)62.5 kgs

C

C)4 kgs.

D

D)40 kgs

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the concept of direct proportionality between the weight hung on the spring and the extension produced in the spring. ### Step-by-Step Solution: 1. **Understand the relationship**: The problem states that the amount of extension \( e \) in a spring is proportional to the weight \( W \) hung on it. This can be expressed mathematically as: \[ W \propto e \] or \[ W = k \cdot e \] where \( k \) is a constant of proportionality. 2. **Set up the known values**: We know that when a weight of 5 kg is hung on the spring, it produces an extension of 0.4 cm. We can denote these values as: - \( W_1 = 5 \) kg - \( e_1 = 0.4 \) cm 3. **Set up the unknown values**: We want to find the weight \( W_2 \) that produces an extension of 5 cm. We denote these values as: - \( e_2 = 5 \) cm - \( W_2 = ? \) 4. **Use the proportionality relationship**: From the proportionality, we can set up the ratio: \[ \frac{W_1}{W_2} = \frac{e_1}{e_2} \] 5. **Substitute the known values into the ratio**: \[ \frac{5}{W_2} = \frac{0.4}{5} \] 6. **Cross-multiply to solve for \( W_2 \)**: \[ 5 \cdot 5 = 0.4 \cdot W_2 \] \[ 25 = 0.4 \cdot W_2 \] 7. **Isolate \( W_2 \)**: \[ W_2 = \frac{25}{0.4} \] 8. **Calculate \( W_2 \)**: \[ W_2 = \frac{25 \times 10}{4} = \frac{250}{4} = 62.5 \text{ kg} \] ### Final Answer: The weight that would produce an extension of 5 cm is **62.5 kg**.
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-V|9 Videos
  • MENSURATION

    KIRAN PUBLICATION|Exercise Test Yourself|28 Videos
  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

The amount of extension in a spring is proporational to the weight hung on it.If the weight of 5 kgs produces an extension of 0.4 cm,what weight would produce an extension of 5 cm?

The amount of extension in an elastic spring varies directly as the weight hung on it. If a weight of 150 gm produces an extension of 2.9 cm, then what weight would produce an extension of 17.4 cm?

The amount of extension in an elastic string varies dirctlyl as the weight hung on it. If a weight of 150 gm produces an extension of 2.9 cm, what would produce an extension of 17.4 cm?

The amount of extension in an elastic spring varies directly with the weight hung on it. If a weight of 250 gm produces an extension of 3.5 cm, find the extension produced by the weight of 700 gm.

The vertical extension in a light spring by a weight of 1 kg suspended from the wire is 9.8 cm . The period of oscillation

A spring obeys Hooke's law. When loaded with 12 g its extension is 2 cm Which of the following will produce a 3 cm extension if g=10m//s^(2) ?