Home
Class 12
MATHS
The determinant |{:(b^(2)-ab,b-c,bc-ac),...

The determinant `|{:(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ca,c-a,ab-a^(2)):}|` equals

A

`abc(b-c)(c-a)(a-b)`

B

`(b-c)(c-a)(a-b)`

C

0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise Type-II (Fill in the blanks questions)|31 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise Type-III (True or False questions)|25 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise Example (Questions caryying 6 marks)|35 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DIFFERENTAL QUATIONS

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|41 Videos

Similar Questions

Explore conceptually related problems

The determinant |{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}| is divisible by

Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| = 4a^(2)b^(2)c^(2)

Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2),c^(2)),( bc,ca,ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a)

Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2) .

Prove that |(bc-a^2, ca-b^2, ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2)| is divisible by a+b+c. Also find the value of the quotient.

Prove that |{:((b+c)^(2), a^(2), bc),((c+a)^(2), b^(2), ca),((a+b)^(2), c^(2), ab):}|= (a-b) (b-c)(c-a)(a + b+c) (a^(2) + b^(2) + c^(2)) .

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

Without expanding, prove that the following determinants vanish: {:|(b^2c^2,bc,b+c),(c^2a^2,ca,c+a),(a^2b^2,ab,a+b)|

Prove that: {:|(1,a,bc),(1,b,ca),(1,c,ab)|=(a-b)(b-c)(c-a)

If f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))):} , then find f'(x).

ACCURATE PUBLICATION-DETERMINANTS-Type-I (Multiple choice questions)
  1. If A=[{:(3,1),(1,2):}], then A(adjA) equals

    Text Solution

    |

  2. If A = ([4,3],[3,4]), then A (Adj A) equals :

    Text Solution

    |

  3. If A=[(3,2),(1,4)] , then A(adj A) equals

    Text Solution

    |

  4. The inverse of a symmetric matrix is :

    Text Solution

    |

  5. Prove that |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]|= 0

    Text Solution

    |

  6. If x,y in R then the determinant Delta=|{:(cosx,-sinx,1),(sinx,cosx,1)...

    Text Solution

    |

  7. If |(2x,5),(8,x)|=|(6,-2),(7,3)| , write the value of x.

    Text Solution

    |

  8. The value of determinant |{:(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c):}| is

    Text Solution

    |

  9. The area of a triangle with vertices (-3,0),(3,0) and (0,k) is 9 sq. u...

    Text Solution

    |

  10. The determinant |{:(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ca...

    Text Solution

    |

  11. The number of distinct real roots of |{:(sinx,cosx,cosx),(cosx,sinx,co...

    Text Solution

    |

  12. If A,B and C are angles of a triangle, then the determinant: {:|(-1,...

    Text Solution

    |

  13. Let f(t)=|{:(cost,t,1),(2sint,t,2t),(sint,t,t):}|, then LT(t to o)(f(t...

    Text Solution

    |

  14. Find the maximum value of : {:|(1,1,1),(1,1+sintheta,1),(1,1,1+costh...

    Text Solution

    |

  15. Consider the determinant f(x)=|{:(0,x^(2)-a,x^(3)-b),(x^(2)+a,0,x^(2...

    Text Solution

    |

  16. If A=[{:(2,lambda,-3),(0,2,5),(1,1,3):}| , then A^(-1) exists if

    Text Solution

    |

  17. If A and B are invertibel , then which of the following is not correct

    Text Solution

    |

  18. If x,y,z are all different from zero and |{:(1+x,1,1),(1,1+y,1),(1,1,1...

    Text Solution

    |

  19. Without expanding, prove the following |(x,x+y,x+2y),(x+2y,x,x+y),(...

    Text Solution

    |

  20. There are two values of a which makes determinant, Delta=|{:(1,-2,5),(...

    Text Solution

    |