Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines given by
`vec(r) = 3 hat(i) + 8 hat(j) + 3 hat(k) + lambda (3 hat(i) - hat(j) + hat(k)) and`
`vec(r) = - 3 hat(i) - 7 hat(j) + 6 hat(k) + mu (-3 hat(i) + 2 hat(j) + 4 hat(k))`.

Text Solution

Verified by Experts

The correct Answer is:
`3 sqrt(30)` units
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-II

    ACCURATE PUBLICATION|Exercise SECTION-C|8 Videos
  • SAMPLE QUESTION PAPER-I

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos
  • SAMPLE QUESTION PAPER-II (SOLVED)

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by r=(3hat(i)+8hat(j)+3hat(k))+lambda(3hat(i)-hat(j)+hat(k)) and r=(-3hat(i)-7hat(j)+6hat(k))+mu(-3hat(i)+2hat(j)+4hat(k)) .

Find the shortest distance between the lines given by the equations vec r= (hat i + 2 hat j + 3 hat k + lambda (2 hat i + 3 hat j + 4 hat k) , vec r= (2 hat i - 4 hat j + 5 hat k + mu (3 hat i - 4 hat j + 5 hat k) .

Find the shortest distance between the lines given by the equations vec r= (hat i - 2 hat j + 3 hat k) + lambda ( hat i +3 hat j + 4 hat k) , vec r= (2 hat i - hat j +5 hat k) + mu (3 hat i + 4 hat j - hat k) .

Find the shortest distance between the lines given by the equations vec r= (hat i - hat j + 2 hat k + lambda (2 hat i + hat j + 4 hat k) , vec r= (2 hat i - 4 hat j + hat k) + mu (3 hat i + hat j - 5 hat k) .

Find the shortest distance between the lines vec r = 6 hat i + 2 hat j + 2 hat k) lambda (hat i - 2 hat j + 2 hat k ) and vec r = - 4 hat i - hat k + mu (3 hat i - 2 hat j - 2 hat k)

Find the shortest distance between the lines vec r = 2 hat i + 3 hat j + hat k + lambda (2 hat i - hat j + 3 hat k ) and vec r = 7 hat i + 5 hat j + 6 hat k + mu ( hat i + 3 hat j + 5 hat k )

Find the shortest distance between the lines vec r = hat i + 2 hat j + 3 hat k ) + lambda (hat i- 3 hat j + 2 hat k) and vec r = ( 4 hat i + 5 hat j + 6 hat k ) + mu ( 2 hat i + 3 hat j + hat k )

Find the shortest distance between the lines given by the equations vec r= hat i + 2 hat j - 3 hat k + lambda (3 hat I - 4 hat j - hat k) , vec r= 2 hat i - hat j + hat k + mu (hat i - hat j -5 hat k) .

Find the shortest distance between the lines vec r = (hat i + 2 hat j + hat k) + lambda (hat i - hat j + hat k) and vec r = ( 2 hat i - hat j - hat k) + mu ( 2 hat i + hat J + 2 hat k)

Find the shortest distance between the lines vec , = 2 hat i + 3 hat J + 4 hat k + lambda ( 2 hat i - hat J + hat k) and vec r = 3 hat i - 2 hat j- hat k + mu (3 hat i + 2 hat j- 4 hat k).