Home
Class 12
MATHS
f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 ...

`f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):}`
is continuous in the interval [-1,1], then p equals :

A

`-1`

B

`-(1)/(2)`

C

`(1)/(2)`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( p \) for which the function \[ f(x) = \begin{cases} \frac{\sqrt{1 + px} - \sqrt{1 - px}}{x} & \text{for } -1 \leq x < 0 \\ \frac{2x + 1}{x - 2} & \text{for } 0 \leq x \leq 1 \end{cases} \] is continuous on the interval \([-1, 1]\), we need to check the continuity at the point where the two pieces of the function meet, which is at \( x = 0 \). ### Step 1: Find the left-hand limit as \( x \) approaches 0 The left-hand limit (LHL) as \( x \to 0^- \) is given by the first piece of the function: \[ \text{LHL} = \lim_{x \to 0^-} \frac{\sqrt{1 + px} - \sqrt{1 - px}}{x} \] ### Step 2: Apply L'Hôpital's Rule Since substituting \( x = 0 \) directly gives us the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that if the limit results in \( \frac{0}{0} \), we can differentiate the numerator and denominator: \[ \text{LHL} = \lim_{x \to 0^-} \frac{\frac{d}{dx}(\sqrt{1 + px} - \sqrt{1 - px})}{\frac{d}{dx}(x)} \] Calculating the derivatives: - The derivative of the numerator: \[ \frac{d}{dx}(\sqrt{1 + px}) = \frac{p}{2\sqrt{1 + px}}, \quad \frac{d}{dx}(\sqrt{1 - px}) = \frac{-p}{2\sqrt{1 - px}} \] Thus, \[ \frac{d}{dx}(\sqrt{1 + px} - \sqrt{1 - px}) = \frac{p}{2\sqrt{1 + px}} + \frac{p}{2\sqrt{1 - px}} = \frac{p(\sqrt{1 - px} + \sqrt{1 + px})}{2\sqrt{(1 + px)(1 - px)}} \] - The derivative of the denominator is simply \( 1 \). So we have: \[ \text{LHL} = \lim_{x \to 0^-} \frac{p(\sqrt{1 - px} + \sqrt{1 + px})}{2\sqrt{(1 + px)(1 - px)}} \] ### Step 3: Evaluate the limit as \( x \to 0 \) Substituting \( x = 0 \): \[ \text{LHL} = \frac{p(\sqrt{1} + \sqrt{1})}{2\sqrt{1 \cdot 1}} = \frac{p(1 + 1)}{2} = \frac{p \cdot 2}{2} = p \] ### Step 4: Find the right-hand limit as \( x \) approaches 0 The right-hand limit (RHL) as \( x \to 0^+ \) is given by the second piece of the function: \[ \text{RHL} = \lim_{x \to 0^+} \frac{2x + 1}{x - 2} \] Substituting \( x = 0 \): \[ \text{RHL} = \frac{2(0) + 1}{0 - 2} = \frac{1}{-2} = -\frac{1}{2} \] ### Step 5: Set the left-hand limit equal to the right-hand limit For the function to be continuous at \( x = 0 \), we need: \[ \text{LHL} = \text{RHL} \] Thus, \[ p = -\frac{1}{2} \] ### Conclusion The value of \( p \) for which the function is continuous on the interval \([-1, 1]\) is: \[ \boxed{-\frac{1}{2}} \]

To determine the value of \( p \) for which the function \[ f(x) = \begin{cases} \frac{\sqrt{1 + px} - \sqrt{1 - px}}{x} & \text{for } -1 \leq x < 0 \\ \frac{2x + 1}{x - 2} & \text{for } 0 \leq x \leq 1 \end{cases} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x)={(sqrt(1+p x)-sqrt(1-p x))/x ,-1lt=x<0(2x+1)/(x-2),0geqxgeq1 is continuous in the interval [-1,1], then p is equal to -1 (b) -1/2 (c) 1/2 (d) 1

f(x)={[(srt(1+px)-sqrt(1-px))/x,-1<=x<0],[(2x+1)/(x-2),0<=x<=1]}is continuous in the interval [-1, 1], then 'p' is equal to:,0

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

Let f(x)={{:((sqrt(1+ax)-sqrt(1-ax))/x ,","-1 le x lt 0),((2x+1)/(x-2), "," 0 le x le 1):} The value of a so f is continuous on [-1,1] is

If f(x) = {((sqrt(1+kx)-sqrt(1-kx))/(x), "if" -1 le x lt 0),((2x+k)/(x-1), "if" 0 le x le1):} is continuous at x = 0, then the value of k is

If f(x)={((sqrt(1+kx)-sqrt(1-kx))/(x),",","for" -1 lex lt 0),(2x^(2)+3x-2,",","for" 0 le x le1):} is continuous at x=0 then find k