Home
Class 12
MATHS
If alpha and beta are the roots of ax^(2...

If `alpha and beta` are the roots of `ax^(2)+bx+c=0`, then the value of `(a alpha +b)^(-2)+ (a beta +b)^(-2)` is equal to

A

`(b^(2)-2ac)/(a^(2)c^(2))`

B

`(c^(2)-2ab)/(a^(2)b^(2))`

C

`(a^(2)-2bc)/(b^(2)c^(2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (a\alpha + b)^{-2} + (a\beta + b)^{-2} \) given that \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \). ### Step-by-Step Solution: 1. **Understanding the Roots**: From Vieta's formulas, we know: - The sum of the roots: \( \alpha + \beta = -\frac{b}{a} \) - The product of the roots: \( \alpha \beta = \frac{c}{a} \) 2. **Rewriting the Expression**: We need to rewrite the expression: \[ (a\alpha + b)^{-2} + (a\beta + b)^{-2} \] This can be rewritten as: \[ \frac{1}{(a\alpha + b)^2} + \frac{1}{(a\beta + b)^2} \] 3. **Finding a Common Denominator**: The common denominator for the two fractions is: \[ (a\alpha + b)^2 (a\beta + b)^2 \] Thus, we can write: \[ \frac{(a\beta + b)^2 + (a\alpha + b)^2}{(a\alpha + b)^2 (a\beta + b)^2} \] 4. **Expanding the Numerator**: Now, let's expand the numerator: \[ (a\beta + b)^2 + (a\alpha + b)^2 = a^2\beta^2 + 2ab\beta + b^2 + a^2\alpha^2 + 2ab\alpha + b^2 \] This simplifies to: \[ a^2(\alpha^2 + \beta^2) + 2ab(\alpha + \beta) + 2b^2 \] 5. **Using the Identities**: We know that: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values from Vieta's formulas: \[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} - \frac{2c}{a} \] 6. **Substituting Back**: Now substituting this back into our expression: \[ a^2\left(\frac{b^2}{a^2} - \frac{2c}{a}\right) + 2ab\left(-\frac{b}{a}\right) + 2b^2 \] This simplifies to: \[ b^2 - 2ac - 2b^2 + 2b^2 = b^2 - 2ac \] 7. **Denominator Calculation**: Now we need to calculate the denominator: \[ (a\alpha + b)^2 (a\beta + b)^2 \] This can be expressed as: \[ (a^2\alpha^2 + 2ab\alpha + b^2)(a^2\beta^2 + 2ab\beta + b^2) \] Using the values of \( \alpha \) and \( \beta \): \[ = (a^2\alpha\beta + 2ab(\alpha + \beta) + b^2)^2 \] Substituting \( \alpha + \beta \) and \( \alpha\beta \): \[ = \left(a^2\frac{c}{a} + 2ab\left(-\frac{b}{a}\right) + b^2\right)^2 = \left(ac - 2b^2 + b^2\right)^2 = (ac - b^2)^2 \] 8. **Final Expression**: Now we can combine everything: \[ \frac{b^2 - 2ac}{(ac - b^2)^2} \] ### Final Answer: Thus, the value of \( (a\alpha + b)^{-2} + (a\beta + b)^{-2} \) is: \[ \frac{b^2 - 2ac}{(ac - b^2)^2} \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (True And False)|3 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

If alpha and beta are the roots of ax^(2)+bx+c=0 then the value of the expression (a alpha+b)^(-3)+(a beta+b)^(-3) is equal to

If alpha and beta are the roots of the equation ax^(2)+bx+c=0, then the value of alpha^(3)+beta^(3)

If alpha,beta are the roots of ax^(2)+bx+c=0 and c!=0 .then the value of (1)/((a alpha+b)^(2))+(1)/((a beta+b)^(2)) in terms of a,b,c is

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

If alpha and beta are roots of ax^(2) + bx + c = 0 , then find the value of a((alpha^(2) + beta^(2))/(beta alpha)) + b((alpha)/(beta) + (beta)/(alpha))

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Self Assessment Test
  1. If alpha and beta are the roots of ax^(2)+bx+c=0, then the value of (a...

    Text Solution

    |

  2. If the equation x^(2)-(2+m)x +(m^(2)-4m+4)=0 has equal roots then the ...

    Text Solution

    |

  3. The number of real solutions of the equation |x|^(2)-3|x|+2=0 is :

    Text Solution

    |

  4. Find the number of solution of the equation e^(sinx)-e^(-sinx)-4=0

    Text Solution

    |

  5. The roots of the equation (p-q) x^(2)+(q-r) x+(r-p)=0 are

    Text Solution

    |

  6. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  7. Let alpha and beta are the roots of the equation x^(2) + x + 1 = 0 The...

    Text Solution

    |

  8. If the quadratic equation x^(2) +ax +b =0 and x^(2) +bx +a =0 (a ne b...

    Text Solution

    |

  9. If the roots of the equation x^2-8x+a^2-6a=0 are real distinct, then f...

    Text Solution

    |

  10. The value of k for which the equation x^(2)-(3k-1)x+2k^(2)+2k=11 have ...

    Text Solution

    |

  11. if 2 = I sqrt3 be a root of the equation x^(2) + px + q =0, where p ...

    Text Solution

    |

  12. The number of solutions of the pair of equations 2s in^2theta-cos2thet...

    Text Solution

    |

  13. If alpha, beta are roots of the equations Ax^(2)+Bx+C=0. Then value of...

    Text Solution

    |

  14. If the equation x^(2)+px+q=0 and x^(2)+qx+p=0 have a common root then ...

    Text Solution

    |

  15. If alpha and beta (alpha lt beta) are the roots of the equation x^(2) ...

    Text Solution

    |

  16. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  17. If the roots of the equation (x^2-b x)/(a x-c)=(m-1)/(m+1) are equal t...

    Text Solution

    |

  18. If sin alpha, cos alpha are the roots of the equation ax^(2)+bx+c=0, t...

    Text Solution

    |

  19. If alpha, beta are the roots of x^(2)-ax+b =0 and If alpha^(n)+beta^(n...

    Text Solution

    |

  20. The value of a for which one root of the quadratic equation (a^2-5a+3)...

    Text Solution

    |

  21. If a,b, c are in G.P., then the equations ax^(2) + 2bx + c = 0 and dx^...

    Text Solution

    |