Home
Class 12
MATHS
If alpha and beta are the roots of ax^(...

If ` alpha and beta` are the roots of `ax^(2)+bx+c=0`, then the value of the expression `(a alpha +b)^(-3)+ (a beta +b)^(-3)` is equal to

A

`(a^(3)-3abc)/(b^(3)c^(3))`

B

`(b^(3)-3abc)/(c^(3)a^(3))`

C

`(c^(3)-3abc)/(alpha^(3)b^(3))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((a \alpha + b)^{-3} + (a \beta + b)^{-3}\), where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(ax^2 + bx + c = 0\). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the quadratic equation \(ax^2 + bx + c = 0\) are given by: \[ \alpha + \beta = -\frac{b}{a} \quad \text{(sum of roots)} \] \[ \alpha \beta = \frac{c}{a} \quad \text{(product of roots)} \] 2. **Rewrite the Expression**: We need to evaluate: \[ (a \alpha + b)^{-3} + (a \beta + b)^{-3} \] This can be rewritten as: \[ \frac{1}{(a \alpha + b)^3} + \frac{1}{(a \beta + b)^3} \] 3. **Find a Common Denominator**: The common denominator for the two fractions is: \[ (a \alpha + b)^3 (a \beta + b)^3 \] Thus, we can express the sum as: \[ \frac{(a \beta + b)^3 + (a \alpha + b)^3}{(a \alpha + b)^3 (a \beta + b)^3} \] 4. **Use the Sum of Cubes Formula**: The sum of cubes can be expressed using the formula: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] Let \(x = a \alpha + b\) and \(y = a \beta + b\). Then: \[ x + y = (a \alpha + b) + (a \beta + b) = a(\alpha + \beta) + 2b = a\left(-\frac{b}{a}\right) + 2b = -b + 2b = b \] Now, we need to calculate \(x^2 - xy + y^2\): \[ x^2 + y^2 = (a \alpha + b)^2 + (a \beta + b)^2 \] Expanding these: \[ (a \alpha + b)^2 = a^2 \alpha^2 + 2ab \alpha + b^2 \] \[ (a \beta + b)^2 = a^2 \beta^2 + 2ab \beta + b^2 \] Adding these: \[ x^2 + y^2 = a^2 (\alpha^2 + \beta^2) + 2ab (\alpha + \beta) + 2b^2 \] Using \(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta\): \[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} - \frac{2c}{a} \] Thus: \[ x^2 + y^2 = a^2\left(\frac{b^2}{a^2} - \frac{2c}{a}\right) + 2ab\left(-\frac{b}{a}\right) + 2b^2 \] Simplifying gives: \[ b^2 - 2ac - 2b^2 + 2b^2 = -2ac + b^2 \] Now, we also need \(xy = (a \alpha + b)(a \beta + b) = a^2 \alpha \beta + ab(\alpha + \beta) + b^2 = a c - b^2 + b^2 = ac\). 5. **Combine Everything**: Now substituting back into the sum of cubes: \[ x^3 + y^3 = b\left((-2ac + b^2) - ac\right) = b(-3ac + b^2) \] Thus, the expression becomes: \[ \frac{b(-3ac + b^2)}{(a \alpha + b)^3 (a \beta + b)^3} \] 6. **Final Expression**: The denominator simplifies to: \[ (a^2 c^2) \quad \text{(since both roots contribute)} \] Therefore, the final value of the expression is: \[ \frac{b(-3ac + b^2)}{(ac)^3} \] ### Final Answer: The value of the expression is: \[ \frac{b^3 - 3abc}{(ac)^3} \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (True And False)|3 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

37. If alpha and beta are the roots of ax^(2)+bx+c=0, then the value of (a alpha+b)^(-2)+(a beta+b)^(-2) is equal to

33. If alpha and beta are the root of ax^(2)+bx+c=0. then the value of the value of {(beta)/(a alpha+b)+(alpha)/(a beta+b)} is

If alpha and beta are the roots of the equation ax^(2) + bx + c = 0 , then what is the value of the expression (alpha + 1)(beta + 1) ?

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

If alpha and beta are the roots of the equation ax^(2)+bx+c=0, then the value of alpha^(3)+beta^(3)

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

If alpha and beta are roots of ax^(2)-bx+c=0 then (alpha+1)(beta+1) is equal to

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Self Assessment Test
  1. If alpha and beta are the roots of ax^(2)+bx+c=0, then the value of t...

    Text Solution

    |

  2. If the equation x^(2)-(2+m)x +(m^(2)-4m+4)=0 has equal roots then the ...

    Text Solution

    |

  3. The number of real solutions of the equation |x|^(2)-3|x|+2=0 is :

    Text Solution

    |

  4. Find the number of solution of the equation e^(sinx)-e^(-sinx)-4=0

    Text Solution

    |

  5. The roots of the equation (p-q) x^(2)+(q-r) x+(r-p)=0 are

    Text Solution

    |

  6. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  7. Let alpha and beta are the roots of the equation x^(2) + x + 1 = 0 The...

    Text Solution

    |

  8. If the quadratic equation x^(2) +ax +b =0 and x^(2) +bx +a =0 (a ne b...

    Text Solution

    |

  9. If the roots of the equation x^2-8x+a^2-6a=0 are real distinct, then f...

    Text Solution

    |

  10. The value of k for which the equation x^(2)-(3k-1)x+2k^(2)+2k=11 have ...

    Text Solution

    |

  11. if 2 = I sqrt3 be a root of the equation x^(2) + px + q =0, where p ...

    Text Solution

    |

  12. The number of solutions of the pair of equations 2s in^2theta-cos2thet...

    Text Solution

    |

  13. If alpha, beta are roots of the equations Ax^(2)+Bx+C=0. Then value of...

    Text Solution

    |

  14. If the equation x^(2)+px+q=0 and x^(2)+qx+p=0 have a common root then ...

    Text Solution

    |

  15. If alpha and beta (alpha lt beta) are the roots of the equation x^(2) ...

    Text Solution

    |

  16. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  17. If the roots of the equation (x^2-b x)/(a x-c)=(m-1)/(m+1) are equal t...

    Text Solution

    |

  18. If sin alpha, cos alpha are the roots of the equation ax^(2)+bx+c=0, t...

    Text Solution

    |

  19. If alpha, beta are the roots of x^(2)-ax+b =0 and If alpha^(n)+beta^(n...

    Text Solution

    |

  20. The value of a for which one root of the quadratic equation (a^2-5a+3)...

    Text Solution

    |

  21. If a,b, c are in G.P., then the equations ax^(2) + 2bx + c = 0 and dx^...

    Text Solution

    |