Home
Class 12
MATHS
If alpha, beta are roots of ax^(2) -2bx ...

If `alpha, beta` are roots of `ax^(2) -2bx +c=0`, then `alpha^(3) beta^(3) + alpha^(2) beta^(3) +alpha^(3) beta^(2)` is

A

`(c^(2)(c+2ab))/(a^(3))`

B

`(bc^(3))/(a^(3))`

C

`(c^(2))/(a^(3))`

D

`none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^3 \beta^3 + \alpha^2 \beta^3 + \alpha^3 \beta^2 \) given that \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( ax^2 - 2bx + c = 0 \). ### Step-by-Step Solution: 1. **Identify the roots and their relationships**: - From Vieta's formulas, for the quadratic equation \( ax^2 - 2bx + c = 0 \): - The sum of the roots \( \alpha + \beta = \frac{2b}{a} \) - The product of the roots \( \alpha \beta = \frac{c}{a} \) 2. **Rewrite the expression**: - The expression we need to evaluate is: \[ \alpha^3 \beta^3 + \alpha^2 \beta^3 + \alpha^3 \beta^2 \] - This can be factored as: \[ \alpha^2 \beta^2 (\alpha + \beta) \] 3. **Substitute the values**: - We already know: - \( \alpha + \beta = \frac{2b}{a} \) - \( \alpha \beta = \frac{c}{a} \) - Therefore, \( \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{c}{a}\right)^2 \) 4. **Combine the results**: - Substitute \( \alpha^2 \beta^2 \) and \( \alpha + \beta \) into the expression: \[ \alpha^3 \beta^3 + \alpha^2 \beta^3 + \alpha^3 \beta^2 = \left(\frac{c^2}{a^2}\right) \left(\frac{2b}{a}\right) \] 5. **Simplify the expression**: - This simplifies to: \[ \frac{2bc^2}{a^3} \] ### Final Result: Thus, the value of \( \alpha^3 \beta^3 + \alpha^2 \beta^3 + \alpha^3 \beta^2 \) is: \[ \frac{2bc^2}{a^3} \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (True And False)|3 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots a^(x)-2bx+c=0 then alpha^(3)beta^(3)+alpha^(2)beta^(3)+beta^(2)alpha^(3)=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha,beta are the roots of ax^(2)+bx+c-0 then alpha beta^(2)+alpha^(2)beta+alpha beta=

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

If alpha and beta are roots of the equation,3x^(2)-6x+15=0, then alpha^(3)beta^(2)+alpha^(2)beta^(3)=

If alpha and beta are roots of the equaltion,3x^(2)-6x+15=0, then alpha^(3)beta^(2)+alpha^(2)beta^(3)

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Self Assessment Test
  1. If alpha, beta are roots of ax^(2) -2bx +c=0, then alpha^(3) beta^(3) ...

    Text Solution

    |

  2. If the equation x^(2)-(2+m)x +(m^(2)-4m+4)=0 has equal roots then the ...

    Text Solution

    |

  3. The number of real solutions of the equation |x|^(2)-3|x|+2=0 is :

    Text Solution

    |

  4. Find the number of solution of the equation e^(sinx)-e^(-sinx)-4=0

    Text Solution

    |

  5. The roots of the equation (p-q) x^(2)+(q-r) x+(r-p)=0 are

    Text Solution

    |

  6. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  7. Let alpha and beta are the roots of the equation x^(2) + x + 1 = 0 The...

    Text Solution

    |

  8. If the quadratic equation x^(2) +ax +b =0 and x^(2) +bx +a =0 (a ne b...

    Text Solution

    |

  9. If the roots of the equation x^2-8x+a^2-6a=0 are real distinct, then f...

    Text Solution

    |

  10. The value of k for which the equation x^(2)-(3k-1)x+2k^(2)+2k=11 have ...

    Text Solution

    |

  11. if 2 = I sqrt3 be a root of the equation x^(2) + px + q =0, where p ...

    Text Solution

    |

  12. The number of solutions of the pair of equations 2s in^2theta-cos2thet...

    Text Solution

    |

  13. If alpha, beta are roots of the equations Ax^(2)+Bx+C=0. Then value of...

    Text Solution

    |

  14. If the equation x^(2)+px+q=0 and x^(2)+qx+p=0 have a common root then ...

    Text Solution

    |

  15. If alpha and beta (alpha lt beta) are the roots of the equation x^(2) ...

    Text Solution

    |

  16. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  17. If the roots of the equation (x^2-b x)/(a x-c)=(m-1)/(m+1) are equal t...

    Text Solution

    |

  18. If sin alpha, cos alpha are the roots of the equation ax^(2)+bx+c=0, t...

    Text Solution

    |

  19. If alpha, beta are the roots of x^(2)-ax+b =0 and If alpha^(n)+beta^(n...

    Text Solution

    |

  20. The value of a for which one root of the quadratic equation (a^2-5a+3)...

    Text Solution

    |

  21. If a,b, c are in G.P., then the equations ax^(2) + 2bx + c = 0 and dx^...

    Text Solution

    |