Home
Class 12
MATHS
If alpha, beta are the roots of ax^(2) +...

If `alpha, beta` are the roots of `ax^(2) +bx+c=0 and alpha + beta, alpha^(2)+beta^(2) , alpha^(3)+beta^(3)` are in G.P., then

A

`Delta ne 0`

B

`b Delta =0`

C

`cb ne 0`

D

`c Delta =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given quadratic equation \( ax^2 + bx + c = 0 \) with roots \( \alpha \) and \( \beta \). We are given that \( \alpha + \beta \), \( \alpha^2 + \beta^2 \), and \( \alpha^3 + \beta^3 \) are in geometric progression (G.P.). ### Step 1: Identify the relationships between the roots From Vieta's formulas, we know: - The sum of the roots: \[ \alpha + \beta = -\frac{b}{a} \] - The product of the roots: \[ \alpha \beta = \frac{c}{a} \] ### Step 2: Express \( \alpha^2 + \beta^2 \) and \( \alpha^3 + \beta^3 \) We can express \( \alpha^2 + \beta^2 \) using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values from Vieta's formulas: \[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} - \frac{2c}{a} = \frac{b^2 - 2ac}{a^2} \] Next, we can express \( \alpha^3 + \beta^3 \) using the identity: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) \] Substituting the known values: \[ \alpha^3 + \beta^3 = \left(-\frac{b}{a}\right)\left(\frac{b^2 - 2ac}{a^2} - \frac{c}{a}\right) \] This simplifies to: \[ \alpha^3 + \beta^3 = -\frac{b}{a} \left(\frac{b^2 - 2ac - ac}{a^2}\right) = -\frac{b(b^2 - 3ac)}{a^3} \] ### Step 3: Setting up the G.P. condition Since \( \alpha + \beta \), \( \alpha^2 + \beta^2 \), and \( \alpha^3 + \beta^3 \) are in G.P., we have the condition: \[ (\alpha^2 + \beta^2)^2 = (\alpha + \beta)(\alpha^3 + \beta^3) \] Substituting the expressions we derived: \[ \left(\frac{b^2 - 2ac}{a^2}\right)^2 = \left(-\frac{b}{a}\right)\left(-\frac{b(b^2 - 3ac)}{a^3}\right) \] This simplifies to: \[ \frac{(b^2 - 2ac)^2}{a^4} = \frac{b^2(b^2 - 3ac)}{a^4} \] Multiplying through by \( a^4 \) (assuming \( a \neq 0 \)): \[ (b^2 - 2ac)^2 = b^2(b^2 - 3ac) \] ### Step 4: Expanding and rearranging Expanding both sides: \[ b^4 - 4ab^2c + 4a^2c^2 = b^4 - 3ab^2c \] Rearranging gives: \[ 4a^2c^2 - ab^2c + 3ab^2c = 0 \] This simplifies to: \[ 4a^2c^2 - ab^2c = 0 \] Factoring out \( c \): \[ c(4ac - b^2) = 0 \] ### Step 5: Conclusion From this equation, we have two cases: 1. \( c = 0 \) 2. \( 4ac - b^2 = 0 \) which implies \( b^2 = 4ac \) Thus, the required condition is: \[ c = 0 \quad \text{or} \quad b^2 - 4ac = 0 \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (True And False)|3 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of ax^(2)+bx+c-0 then alpha beta^(2)+alpha^(2)beta+alpha beta=

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha,beta are the roots a^(x)-2bx+c=0 then alpha^(3)beta^(3)+alpha^(2)beta^(3)+beta^(2)alpha^(3)=

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha)+(1)/(beta) =

If alpha. beta are roots of the equation ax^(2)+bx+c=0 and alpha-beta=alpha*beta then

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Self Assessment Test
  1. If alpha, beta are the roots of ax^(2) +bx+c=0 and alpha + beta, alpha...

    Text Solution

    |

  2. If the equation x^(2)-(2+m)x +(m^(2)-4m+4)=0 has equal roots then the ...

    Text Solution

    |

  3. The number of real solutions of the equation |x|^(2)-3|x|+2=0 is :

    Text Solution

    |

  4. Find the number of solution of the equation e^(sinx)-e^(-sinx)-4=0

    Text Solution

    |

  5. The roots of the equation (p-q) x^(2)+(q-r) x+(r-p)=0 are

    Text Solution

    |

  6. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  7. Let alpha and beta are the roots of the equation x^(2) + x + 1 = 0 The...

    Text Solution

    |

  8. If the quadratic equation x^(2) +ax +b =0 and x^(2) +bx +a =0 (a ne b...

    Text Solution

    |

  9. If the roots of the equation x^2-8x+a^2-6a=0 are real distinct, then f...

    Text Solution

    |

  10. The value of k for which the equation x^(2)-(3k-1)x+2k^(2)+2k=11 have ...

    Text Solution

    |

  11. if 2 = I sqrt3 be a root of the equation x^(2) + px + q =0, where p ...

    Text Solution

    |

  12. The number of solutions of the pair of equations 2s in^2theta-cos2thet...

    Text Solution

    |

  13. If alpha, beta are roots of the equations Ax^(2)+Bx+C=0. Then value of...

    Text Solution

    |

  14. If the equation x^(2)+px+q=0 and x^(2)+qx+p=0 have a common root then ...

    Text Solution

    |

  15. If alpha and beta (alpha lt beta) are the roots of the equation x^(2) ...

    Text Solution

    |

  16. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  17. If the roots of the equation (x^2-b x)/(a x-c)=(m-1)/(m+1) are equal t...

    Text Solution

    |

  18. If sin alpha, cos alpha are the roots of the equation ax^(2)+bx+c=0, t...

    Text Solution

    |

  19. If alpha, beta are the roots of x^(2)-ax+b =0 and If alpha^(n)+beta^(n...

    Text Solution

    |

  20. The value of a for which one root of the quadratic equation (a^2-5a+3)...

    Text Solution

    |

  21. If a,b, c are in G.P., then the equations ax^(2) + 2bx + c = 0 and dx^...

    Text Solution

    |