Home
Class 12
MATHS
If tan A and tan B are the roots of the ...

If tan A and tan B are the roots of the quadratic equation `x^(2)-px+q=0`, then the value `sin^(2)(A+B)` is

A

`(p^(2))/(p^(2)+q^(2))`

B

`(p^(2))/((p+q)^(2))`

C

`1-(p)/((1-q)^(2))`

D

`(p^(2))/((1-q)^(2)+p^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2(A+B) \) given that \( \tan A \) and \( \tan B \) are the roots of the quadratic equation \( x^2 - px + q = 0 \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the quadratic equation \( x^2 - px + q = 0 \) are \( \tan A \) and \( \tan B \). 2. **Sum and Product of Roots**: From the properties of quadratic equations, we know: - The sum of the roots \( \tan A + \tan B = p \) - The product of the roots \( \tan A \tan B = q \) 3. **Use the Formula for \( \tan(A+B) \)**: We can use the formula for the tangent of the sum of two angles: \[ \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Substituting the values we found: \[ \tan(A+B) = \frac{p}{1 - q} \] 4. **Find \( \sin(A+B) \)**: We know that: \[ \sin(A+B) = \frac{\tan(A+B)}{\sqrt{1 + \tan^2(A+B)}} \] Therefore, we need to find \( \tan^2(A+B) \): \[ \tan^2(A+B) = \left(\frac{p}{1 - q}\right)^2 \] Now, substituting this into the equation for \( \sin(A+B) \): \[ \sin(A+B) = \frac{\frac{p}{1 - q}}{\sqrt{1 + \left(\frac{p}{1 - q}\right)^2}} \] 5. **Simplify the Expression**: The expression under the square root simplifies to: \[ 1 + \left(\frac{p}{1 - q}\right)^2 = \frac{(1 - q)^2 + p^2}{(1 - q)^2} \] Thus, \[ \sin(A+B) = \frac{p}{1 - q} \cdot \frac{(1 - q)}{\sqrt{(1 - q)^2 + p^2}} = \frac{p}{\sqrt{(1 - q)^2 + p^2}} \] 6. **Find \( \sin^2(A+B) \)**: Now, squaring \( \sin(A+B) \): \[ \sin^2(A+B) = \left(\frac{p}{\sqrt{(1 - q)^2 + p^2}}\right)^2 = \frac{p^2}{(1 - q)^2 + p^2} \] ### Final Result: Thus, the value of \( \sin^2(A+B) \) is: \[ \sin^2(A+B) = \frac{p^2}{(1 - q)^2 + p^2} \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (True And False)|3 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If tan A and tan B are the roots of the quadratic equation x^(2)-px+q=0 then value of sin^(2)(A+B)

If tan A and tan B are the roots of the quadratic equation, 3x^(2)-10x-25=0, then the value of 3sin^(2)(A+B)-10sin(A+B)*cos(A+B)-25cos^(2)(A+B) is

If tan A&tan B are the roots of the quadratic equation x^(2)-ax+b=0 ,then the value of sin^(2)(A+B) is:

If tan A & tan B are the roots of the quadratic equation a x^(2) +bx+c=0 then evaluate a sin^(2)(A+B)+b sin (A+B).cos (A+B)+cos^(2)(A+B)

If tan A&tan B are the roots of the quadratic equation,ax^(2)+bx+c=0 then evaluate a sin^(2)(A+B)+b sin(A+B),*cos(A+B)+c cos^(2)(A+B)

If tan A and tan B are the roots of the equation 3x^(2)-10x-25=0 then the value of 25cos^(2)(A+B)+10sin(A+B)cos(A+B)-3sin^(2)(A+B) is

If p and q are the roots of the quadratic equation x^(2)+px-q=0 , then find the values of p and q.

If m and n are the roots of the quadratic equation x^(2) + px + 8=0 with m- n = 2, then the value of p' is

If in a !ABC , tan A/2 and tan B/2 are the roots of the equation 6x^(2)-5x+1=0 , then

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Self Assessment Test
  1. If tan A and tan B are the roots of the quadratic equation x^(2)-px+q=...

    Text Solution

    |

  2. If the equation x^(2)-(2+m)x +(m^(2)-4m+4)=0 has equal roots then the ...

    Text Solution

    |

  3. The number of real solutions of the equation |x|^(2)-3|x|+2=0 is :

    Text Solution

    |

  4. Find the number of solution of the equation e^(sinx)-e^(-sinx)-4=0

    Text Solution

    |

  5. The roots of the equation (p-q) x^(2)+(q-r) x+(r-p)=0 are

    Text Solution

    |

  6. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  7. Let alpha and beta are the roots of the equation x^(2) + x + 1 = 0 The...

    Text Solution

    |

  8. If the quadratic equation x^(2) +ax +b =0 and x^(2) +bx +a =0 (a ne b...

    Text Solution

    |

  9. If the roots of the equation x^2-8x+a^2-6a=0 are real distinct, then f...

    Text Solution

    |

  10. The value of k for which the equation x^(2)-(3k-1)x+2k^(2)+2k=11 have ...

    Text Solution

    |

  11. if 2 = I sqrt3 be a root of the equation x^(2) + px + q =0, where p ...

    Text Solution

    |

  12. The number of solutions of the pair of equations 2s in^2theta-cos2thet...

    Text Solution

    |

  13. If alpha, beta are roots of the equations Ax^(2)+Bx+C=0. Then value of...

    Text Solution

    |

  14. If the equation x^(2)+px+q=0 and x^(2)+qx+p=0 have a common root then ...

    Text Solution

    |

  15. If alpha and beta (alpha lt beta) are the roots of the equation x^(2) ...

    Text Solution

    |

  16. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  17. If the roots of the equation (x^2-b x)/(a x-c)=(m-1)/(m+1) are equal t...

    Text Solution

    |

  18. If sin alpha, cos alpha are the roots of the equation ax^(2)+bx+c=0, t...

    Text Solution

    |

  19. If alpha, beta are the roots of x^(2)-ax+b =0 and If alpha^(n)+beta^(n...

    Text Solution

    |

  20. The value of a for which one root of the quadratic equation (a^2-5a+3)...

    Text Solution

    |

  21. If a,b, c are in G.P., then the equations ax^(2) + 2bx + c = 0 and dx^...

    Text Solution

    |