Home
Class 12
MATHS
If alpha, beta, gamma are the roots of t...

If `alpha, beta, gamma` are the roots of the equaion `x^(3)+px^(2)+qx+r=0`, then `(1-alpha^(2)) (1-beta^(2)) (1-gamma^(2))` is equal to

A

`(1+q)^(2)-(p+r)^(2)`

B

`(1+q)^(2)+(p+r)^(2)`

C

`(1-q)^(2)+ (p-r)^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2) \) where \( \alpha, \beta, \gamma \) are the roots of the cubic equation \( x^3 + px^2 + qx + r = 0 \). ### Step-by-Step Solution: 1. **Expand the Expression**: \[ (1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2) = 1 - (\alpha^2 + \beta^2 + \gamma^2) + (\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2) - \alpha^2\beta^2\gamma^2 \] 2. **Using Vieta's Formulas**: From Vieta's formulas for the roots of the polynomial \( x^3 + px^2 + qx + r = 0 \): - The sum of the roots \( \alpha + \beta + \gamma = -p \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = q \) - The product of the roots \( \alpha\beta\gamma = -r \) 3. **Calculate \( \alpha^2 + \beta^2 + \gamma^2 \)**: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substituting the values from Vieta's: \[ = (-p)^2 - 2q = p^2 - 2q \] 4. **Calculate \( \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 \)**: \[ \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma) \] Substituting the values: \[ = q^2 - 2(-r)(-p) = q^2 - 2rp \] 5. **Calculate \( \alpha^2\beta^2\gamma^2 \)**: \[ \alpha^2\beta^2\gamma^2 = (\alpha\beta\gamma)^2 = (-r)^2 = r^2 \] 6. **Substituting Back into the Expanded Expression**: Now substituting all the calculated values back into the expanded expression: \[ (1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2) = 1 - (p^2 - 2q) + (q^2 - 2rp) - r^2 \] Simplifying this gives: \[ = 1 - p^2 + 2q + q^2 - 2rp - r^2 \] 7. **Final Result**: Thus, the final expression is: \[ (1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2) = 1 + q^2 - p^2 - r^2 + 2q - 2rp \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (True And False)|3 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation,x^(3)+P_(0)x^(2)+P_(1)x+P_(2)=0 ,then (1-alpha^(2))(1-beta^(2))(1-gamma^(2)) is equal to

If alpha,beta,gamma are the roots of equation x^(3)-px^(2)+qx-r=0, then the value of (1)/(alpha^(2))+(1)/(beta^(2))+(1)/(gamma^(2)) is

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 then the value of sum alpha^(2)beta=

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha , beta , gamma are the roots of x^(3)+px^(2)+qx+r=0 then the value of (1+alpha^(2))(1+beta^(2))(1+gamma^(2)) is

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0 such that alpha+beta=0 then

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Self Assessment Test
  1. If alpha, beta, gamma are the roots of the equaion x^(3)+px^(2)+qx+r=0...

    Text Solution

    |

  2. If the equation x^(2)-(2+m)x +(m^(2)-4m+4)=0 has equal roots then the ...

    Text Solution

    |

  3. The number of real solutions of the equation |x|^(2)-3|x|+2=0 is :

    Text Solution

    |

  4. Find the number of solution of the equation e^(sinx)-e^(-sinx)-4=0

    Text Solution

    |

  5. The roots of the equation (p-q) x^(2)+(q-r) x+(r-p)=0 are

    Text Solution

    |

  6. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  7. Let alpha and beta are the roots of the equation x^(2) + x + 1 = 0 The...

    Text Solution

    |

  8. If the quadratic equation x^(2) +ax +b =0 and x^(2) +bx +a =0 (a ne b...

    Text Solution

    |

  9. If the roots of the equation x^2-8x+a^2-6a=0 are real distinct, then f...

    Text Solution

    |

  10. The value of k for which the equation x^(2)-(3k-1)x+2k^(2)+2k=11 have ...

    Text Solution

    |

  11. if 2 = I sqrt3 be a root of the equation x^(2) + px + q =0, where p ...

    Text Solution

    |

  12. The number of solutions of the pair of equations 2s in^2theta-cos2thet...

    Text Solution

    |

  13. If alpha, beta are roots of the equations Ax^(2)+Bx+C=0. Then value of...

    Text Solution

    |

  14. If the equation x^(2)+px+q=0 and x^(2)+qx+p=0 have a common root then ...

    Text Solution

    |

  15. If alpha and beta (alpha lt beta) are the roots of the equation x^(2) ...

    Text Solution

    |

  16. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  17. If the roots of the equation (x^2-b x)/(a x-c)=(m-1)/(m+1) are equal t...

    Text Solution

    |

  18. If sin alpha, cos alpha are the roots of the equation ax^(2)+bx+c=0, t...

    Text Solution

    |

  19. If alpha, beta are the roots of x^(2)-ax+b =0 and If alpha^(n)+beta^(n...

    Text Solution

    |

  20. The value of a for which one root of the quadratic equation (a^2-5a+3)...

    Text Solution

    |

  21. If a,b, c are in G.P., then the equations ax^(2) + 2bx + c = 0 and dx^...

    Text Solution

    |