Home
Class 12
MATHS
If alpha, beta are the roots of the quad...

If `alpha, beta` are the roots of the quadratic equation `6x^(2)-6x+1=0`, then
`(1)/(2) (a+balpha+c alpha^(2)+d alpha^(3))+(1)/(2) (a+b beta+c beta^(2)+ d beta^(3))=` …..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given quadratic equation and use the properties of its roots. The quadratic equation provided is: \[ 6x^2 - 6x + 1 = 0 \] ### Step 1: Identify the coefficients The coefficients of the quadratic equation are: - \( a = 6 \) - \( b = -6 \) - \( c = 1 \) ### Step 2: Calculate the sum and product of the roots Using Vieta's formulas: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} = -\frac{-6}{6} = 1 \) - The product of the roots \( \alpha \beta = \frac{c}{a} = \frac{1}{6} \) ### Step 3: Rewrite the expression We need to evaluate the expression: \[ \frac{1}{2} \left( a + b\alpha + c\alpha^2 + d\alpha^3 \right) + \frac{1}{2} \left( a + b\beta + c\beta^2 + d\beta^3 \right) \] This can be simplified to: \[ \frac{1}{2} \left( 2a + b(\alpha + \beta) + c(\alpha^2 + \beta^2) + d(\alpha^3 + \beta^3) \right) \] ### Step 4: Substitute known values We already know \( \alpha + \beta = 1 \). Next, we need to find \( \alpha^2 + \beta^2 \) and \( \alpha^3 + \beta^3 \). #### Finding \( \alpha^2 + \beta^2 \) Using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the known values: \[ \alpha^2 + \beta^2 = 1^2 - 2 \cdot \frac{1}{6} = 1 - \frac{1}{3} = \frac{2}{3} \] #### Finding \( \alpha^3 + \beta^3 \) Using the identity: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) \] Substituting the known values: \[ \alpha^3 + \beta^3 = 1 \left( \frac{2}{3} - \frac{1}{6} \right) = 1 \left( \frac{4}{6} - \frac{1}{6} \right) = 1 \cdot \frac{3}{6} = \frac{1}{2} \] ### Step 5: Substitute back into the expression Now we can substitute \( \alpha + \beta \), \( \alpha^2 + \beta^2 \), and \( \alpha^3 + \beta^3 \) back into the expression: \[ \frac{1}{2} \left( 2a + b(1) + c\left(\frac{2}{3}\right) + d\left(\frac{1}{2}\right) \right) \] ### Step 6: Final expression This simplifies to: \[ \frac{1}{2} \left( 2a + b + \frac{2c}{3} + \frac{d}{2} \right) \] ### Step 7: Final Answer Thus, the final answer is: \[ \frac{1}{2} \left( 2a + b + \frac{2c}{3} + \frac{d}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 2|66 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 2 (True And False)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (True And False)|3 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equation 5x^(2)-5x+1=0 , then find the value of (1)/(2)(a+b alpha+c alpha^(2)+d alpha^(3))+(1)/(2)(a+b beta+c beta^(2)+d beta^(3)) .

If alpha,beta are the roots of the quadratic equation 4x^(2)-4x+1=0 then alpha^(3)+beta^(3)=

If alpha and beta are the roots of the quadratic equation x^(2)-3x-2=0, then (alpha)/(beta)+(beta)/(alpha)=

If alpha and beta are the roots of the quadratic equation 2x^2+6x-5=0 , then find (alpha+beta) and alpha xx beta .

If alpha and beta are the roots of the quadratic equation 2x^2+6x-5=0 , then find (alpha+beta) and alpha xx beta .

If alpha " and " beta are the roots of the quadratic equation x^2 -5x +6 =0 then find alpha^2 + beta^2

If alpha,beta are the roots of the equation x^(2)-p(x+1)-c=0, then (alpha+1)(beta+1)=

If alpha " and " beta are the roots of the quadratic equation x^2 -5x +6 =0 then find alpha/beta + beta/alpha

If alpha and beta are the roots of the quadratic equation x^(2)-6x+1=0, then the value of (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is

If alpha and beta are the roots of the equation 3x^(2)+8x+2=0 then ((1)/(alpha)+(1)/(beta))=?