Home
Class 12
MATHS
If a.4^(tan x)+ a.4^(-tan x) -2=0 has re...

If `a.4^(tan x)+ a.4^(-tan x) -2=0` has real solutions, where `0 le x le pi, x ne pi//2`, then `a` lies in the interval

A

`[-1,1]`

B

`[-1,0]`

C

`(0,1]`

D

`[0,oo]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a \cdot 4^{\tan x} + a \cdot 4^{-\tan x} - 2 = 0 \) for real solutions in the interval \( 0 \leq x \leq \pi, x \neq \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rearranging the Equation Start by rearranging the equation: \[ a \cdot 4^{\tan x} + a \cdot 4^{-\tan x} = 2 \] This can be rewritten as: \[ a \left( 4^{\tan x} + 4^{-\tan x} \right) = 2 \] ### Step 2: Introducing a New Variable Let \( y = 4^{\tan x} \). Then, we can express \( 4^{-\tan x} \) as \( \frac{1}{y} \). The equation now becomes: \[ a \left( y + \frac{1}{y} \right) = 2 \] ### Step 3: Simplifying the Expression Multiply through by \( y \) (noting \( y > 0 \)): \[ a(y^2 + 1) = 2y \] Rearranging gives: \[ ay^2 - 2y + a = 0 \] ### Step 4: Finding the Discriminant For the quadratic equation \( ay^2 - 2y + a = 0 \) to have real solutions, the discriminant must be non-negative: \[ D = b^2 - 4ac = (-2)^2 - 4a \cdot a = 4 - 4a^2 \] Setting the discriminant greater than or equal to zero: \[ 4 - 4a^2 \geq 0 \] ### Step 5: Solving the Inequality This simplifies to: \[ 1 - a^2 \geq 0 \] \[ 1 \geq a^2 \] Taking the square root gives: \[ -1 \leq a \leq 1 \] ### Step 6: Considering the Domain of \( a \) Since \( a \) is in the denominator in the original equation, we must also ensure \( a \neq 0 \). Thus, the valid interval for \( a \) is: \[ 0 < a \leq 1 \] ### Final Answer Therefore, \( a \) lies in the interval: \[ (0, 1] \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 2 (True And False)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 2 (Fill In The Blanks)|3 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 1 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le pi/2 then

If a.3^(tan x)+a*3^(-tan x)-2=0 has real solutions,x!=(pi)/(2),0<=x<=pi, then find the set of all possible values of parameter 'a'.

If: sin(x+pi/6)=sqrt3/2 , where 0 le x le 2pi , then: x=

Let 4sin^(2)x - 3 , where 0 le x le pi . What is tan 3x is equal to?

If x in [0,2pi] and |sec x+ tan x|=|sec x|+|tan x| , then x lies in the interval

32^(tan^2x)+32^(Sec^2x)=81 . Find number of solution if 0 le x le pi/4 .

If the equation tan (P cot x)=cot (P tan x) has a solution in x in (0, pi)-{pi/2} , then prove that P le pi/4 .

The number of solutions of the equation x+2tan x=(pi)/(2) in the interval [0, 2pi] is:

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Problem Set - 2
  1. The value of a for which the quadratic equation 3x^(2) + 2a^(2) + 1x...

    Text Solution

    |

  2. If 1 lies between the roots of the equation 3x^(2)-3 sin alpha x -2 co...

    Text Solution

    |

  3. If a.4^(tan x)+ a.4^(-tan x) -2=0 has real solutions, where 0 le x le ...

    Text Solution

    |

  4. If the equation (cos theta - 1) x^(2) + (cos theta ) x + sin theta =0 ...

    Text Solution

    |

  5. If the roots of the equation (x-p) (x-q) =p^(2)- 2q^(2) be real and di...

    Text Solution

    |

  6. The value of a for which the equation 2x^(2)-2(2a+1) x+a(a-1)=0 has ro...

    Text Solution

    |

  7. Find the valuesof m for which exactly one root of the equation x^(2)-2...

    Text Solution

    |

  8. The value of lamda for. Which 2x^(2)-2(2 lamda+1) x+lamda (lamda +1)=0...

    Text Solution

    |

  9. If the equation ax^(2)+bx+c=0 (a gt 0) has two roots alpha and beta su...

    Text Solution

    |

  10. Find the values of a if x^2-2(a-1)x+(2a+1)=0 has positive roots.

    Text Solution

    |

  11. If the equation x^2 +2(a+1)x+9a−5=0 has only negative root, then

    Text Solution

    |

  12. The value of k for which both the roots of the equation 4x^(2)-20kx+(2...

    Text Solution

    |

  13. If the roots of the equation x^2-2ax+a^2+a-3=0are real and less than 3...

    Text Solution

    |

  14. If both the roots of the equation x^(2)-12kx+k^(2)+k-5=0 are less than...

    Text Solution

    |

  15. If both the roots of the equation x^(2)-6ax+2-2a+9a^(2)=0 exceed 3, th...

    Text Solution

    |

  16. If the roots of the equation bx^(2)+cx+a=0 be imaginary, then for all ...

    Text Solution

    |

  17. If cos^(4) x + sin^(2) x -lamda =0, lamda in R has real solutions, the...

    Text Solution

    |

  18. If the roots of x^(2)+x+a=0 exceed 'a' ,then

    Text Solution

    |

  19. The range of values of m for which the equation (m-5) x^(2)+2(m-10) x+...

    Text Solution

    |

  20. The equation ax^(2) +bx+c=0 where a,b,c are real numbers connected by ...

    Text Solution

    |