Home
Class 12
MATHS
The greatest negative integer satisfying...

The greatest negative integer satisfying `x^(2)-4x-77 lt 0 and x^(2) gt 4` is equal to

A

`-3`

B

`-5`

C

`-6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the greatest negative integer that satisfies the inequalities \(x^2 - 4x - 77 < 0\) and \(x^2 > 4\). ### Step 1: Solve the first inequality \(x^2 - 4x - 77 < 0\) 1. **Find the roots of the equation**: We start by solving the equation \(x^2 - 4x - 77 = 0\) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = -4\), and \(c = -77\). \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-77)}}{2 \cdot 1} \] \[ = \frac{4 \pm \sqrt{16 + 308}}{2} \] \[ = \frac{4 \pm \sqrt{324}}{2} \] \[ = \frac{4 \pm 18}{2} \] This gives us the roots: \[ x = \frac{22}{2} = 11 \quad \text{and} \quad x = \frac{-14}{2} = -7 \] 2. **Determine the intervals**: The roots divide the number line into intervals: \((-∞, -7)\), \((-7, 11)\), and \((11, ∞)\). We test a point from each interval to see where the inequality holds. - For \(x = -8\) (in \((-∞, -7)\)): \[ (-8)^2 - 4(-8) - 77 = 64 + 32 - 77 = 19 \quad (\text{not satisfied}) \] - For \(x = 0\) (in \((-7, 11)\)): \[ 0^2 - 4(0) - 77 = -77 \quad (\text{satisfied}) \] - For \(x = 12\) (in \((11, ∞)\)): \[ 12^2 - 4(12) - 77 = 144 - 48 - 77 = 19 \quad (\text{not satisfied}) \] Thus, the solution for the first inequality is: \[ -7 < x < 11 \] ### Step 2: Solve the second inequality \(x^2 > 4\) 1. **Find the roots of the equation**: We solve \(x^2 - 4 = 0\): \[ x^2 = 4 \implies x = 2 \quad \text{and} \quad x = -2 \] 2. **Determine the intervals**: The roots divide the number line into intervals: \((-∞, -2)\), \((-2, 2)\), and \((2, ∞)\). We test a point from each interval to see where the inequality holds. - For \(x = -3\) (in \((-∞, -2)\)): \[ (-3)^2 > 4 \quad (\text{satisfied}) \] - For \(x = 0\) (in \((-2, 2)\)): \[ 0^2 > 4 \quad (\text{not satisfied}) \] - For \(x = 3\) (in \((2, ∞)\)): \[ 3^2 > 4 \quad (\text{satisfied}) \] Thus, the solution for the second inequality is: \[ x < -2 \quad \text{or} \quad x > 2 \] ### Step 3: Combine the solutions Now we need to find the intersection of the two inequalities: 1. From the first inequality: \(-7 < x < 11\) 2. From the second inequality: \(x < -2\) or \(x > 2\) The relevant part of the first inequality that intersects with the second is: \[ -7 < x < -2 \] ### Step 4: Find the greatest negative integer The integers in the interval \((-7, -2)\) are \(-6, -5, -4, -3\). The greatest negative integer in this set is: \[ \boxed{-3} \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 3 (Fill In The Blanks)|2 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

the greatest negative integer satisfying x^(2)+4x-77 4 is

If x^(2)+6x-27 gt 0 and x^(2)-3x-4 lt 0 , then :

The largest negative integer that satisfies (x^(2)-1)/((x-2)(x-3))>0 is

If x is an integer satisfying x^(2)-6x+5 le 0 " and " x^(2)-2x gt 0 , then the number of possible values of x, is

the largest negative integer which satisfies (x^2-1)/((x-2)(x-3))>0

The least positive integer x , which satisfies |x-2| gt 7 ?

Greatest integral x satisfying sqrt(4-x^(2))+(|x|)/(x)>=0

The least integer satisfying 49.4-((27-x)/10)lt 47.4-((27-9x)/10) is

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Problem Set - 4
  1. The values of x which satisfy both the inequations x^(2)-1 le 0 and x^...

    Text Solution

    |

  2. If x is an integer satisfying x^(2)-6x+5 le 0 " and " x^(2)-2x gt 0, t...

    Text Solution

    |

  3. The greatest negative integer satisfying x^(2)-4x-77 lt 0 and x^(2) gt...

    Text Solution

    |

  4. If 4 le x le 9 then the expression (x-4) (x-9) is

    Text Solution

    |

  5. The expression ax^(2)+bx+c has the same sign as of a if

    Text Solution

    |

  6. The value of x^(2)+2bx+c is positive if

    Text Solution

    |

  7. If x^(2)+2ax+10 -3a gt 0 for all x in R, then

    Text Solution

    |

  8. The expression y=ax^(2)+bx+c has always the same sign as of a if

    Text Solution

    |

  9. If the graph of the function y=16x^(2)+8(a+5) x-7a-5 is strictly above...

    Text Solution

    |

  10. Let f(x) be a quadratic expression possible for all real x. If g(x)=...

    Text Solution

    |

  11. If x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-2 lamda -7) gt 0 for all real ...

    Text Solution

    |

  12. If the equation x^(3 )-3x+a=0 has distinct roots between 0 and 1, then...

    Text Solution

    |

  13. If c gt0 and 4a+clt2b then ax^(2)-bc+c=0 has a root in the interval

    Text Solution

    |

  14. If y= tan x cot 3x, x in R, then

    Text Solution

    |

  15. If a lt b lt c lt d, then the quadratic equation (x-a) (x-c) +2(x-b) (...

    Text Solution

    |

  16. Let a,b,c in R and a ne 0. If alpha is a root a^(2) x^(2) +bx+c=0, bet...

    Text Solution

    |

  17. If the roots of the equation x^(2)+2ax+b=0 are real and distinct and t...

    Text Solution

    |

  18. The middle point of the interval in which x^(2)+2 (sqrt(x))^(2)-3 le 0...

    Text Solution

    |

  19. If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2...

    Text Solution

    |

  20. The inequality (x^(2)-|x|-2)/(2|x|-x^(2)-2) gt 2 holds only if.

    Text Solution

    |