Home
Class 12
MATHS
If x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-...

If `x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-2 lamda -7) gt 0` for all real x, then `lamda` belongs to

A

`(0,2)`

B

`(1,3)`

C

`(2,4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x^2 - 2(4\lambda - 1)x + (15\lambda^2 - 2\lambda - 7) > 0 \) for all real \( x \), we need to analyze the quadratic in the form \( ax^2 + bx + c > 0 \). ### Step 1: Identify coefficients The quadratic can be expressed as: - \( a = 1 \) (coefficient of \( x^2 \)) - \( b = -2(4\lambda - 1) = -8\lambda + 2 \) - \( c = 15\lambda^2 - 2\lambda - 7 \) ### Step 2: Condition for the quadratic to be positive for all \( x \) For the quadratic \( ax^2 + bx + c > 0 \) to be positive for all real \( x \), the following conditions must be satisfied: 1. \( a > 0 \) (which is true since \( a = 1 \)) 2. The discriminant \( D < 0 \) ### Step 3: Calculate the discriminant The discriminant \( D \) is given by: \[ D = b^2 - 4ac \] Substituting the values of \( a \), \( b \), and \( c \): \[ D = (-8\lambda + 2)^2 - 4 \cdot 1 \cdot (15\lambda^2 - 2\lambda - 7) \] ### Step 4: Expand the discriminant Calculating \( D \): \[ D = (64\lambda^2 - 32\lambda + 4) - (60\lambda^2 - 8\lambda - 28) \] \[ D = 64\lambda^2 - 32\lambda + 4 - 60\lambda^2 + 8\lambda + 28 \] \[ D = (64\lambda^2 - 60\lambda^2) + (-32\lambda + 8\lambda) + (4 + 28) \] \[ D = 4\lambda^2 - 24\lambda + 32 \] ### Step 5: Set the discriminant less than zero Now we set the discriminant less than zero: \[ 4\lambda^2 - 24\lambda + 32 < 0 \] Dividing the entire inequality by 4: \[ \lambda^2 - 6\lambda + 8 < 0 \] ### Step 6: Factor the quadratic Factoring the quadratic: \[ (\lambda - 2)(\lambda - 4) < 0 \] ### Step 7: Determine the intervals To find the intervals where this inequality holds, we analyze the sign of the product: - The roots are \( \lambda = 2 \) and \( \lambda = 4 \). - The intervals to test are \( (-\infty, 2) \), \( (2, 4) \), and \( (4, \infty) \). ### Step 8: Test the intervals 1. For \( \lambda < 2 \) (e.g., \( \lambda = 0 \)): \[ (0 - 2)(0 - 4) = 8 > 0 \] 2. For \( 2 < \lambda < 4 \) (e.g., \( \lambda = 3 \)): \[ (3 - 2)(3 - 4) = 1 \cdot (-1) = -1 < 0 \] 3. For \( \lambda > 4 \) (e.g., \( \lambda = 5 \)): \[ (5 - 2)(5 - 4) = 3 \cdot 1 = 3 > 0 \] ### Conclusion The inequality \( (\lambda - 2)(\lambda - 4) < 0 \) holds for the interval: \[ \lambda \in (2, 4) \] Thus, the final answer is: \[ \lambda \text{ belongs to } (2, 4) \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 3 (Fill In The Blanks)|2 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

x ^(2) (lamda ^(2) - 4 lamda + 3) +y ^(2) (lamda ^(2) - 6 lamda +5) =1 will represent an ellipse if lamda lies in the interval

If the equation x^(2)+2(lamda+1)x+lamda^(2)+lamda+7=0 has only negative roots, then the least value of lamda equals______.

The values of lamda for which one root of the equation x^2+(1-2lamda)x+(lamda^2-lamda-2)=0 is greater than 3 and the other smaller than 2 are given by

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Problem Set - 4
  1. If x^(2)+2ax+10 -3a gt 0 for all x in R, then

    Text Solution

    |

  2. The expression y=ax^(2)+bx+c has always the same sign as of a if

    Text Solution

    |

  3. If the graph of the function y=16x^(2)+8(a+5) x-7a-5 is strictly above...

    Text Solution

    |

  4. Let f(x) be a quadratic expression possible for all real x. If g(x)=...

    Text Solution

    |

  5. If x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-2 lamda -7) gt 0 for all real ...

    Text Solution

    |

  6. If the equation x^(3 )-3x+a=0 has distinct roots between 0 and 1, then...

    Text Solution

    |

  7. If c gt0 and 4a+clt2b then ax^(2)-bc+c=0 has a root in the interval

    Text Solution

    |

  8. If y= tan x cot 3x, x in R, then

    Text Solution

    |

  9. If a lt b lt c lt d, then the quadratic equation (x-a) (x-c) +2(x-b) (...

    Text Solution

    |

  10. Let a,b,c in R and a ne 0. If alpha is a root a^(2) x^(2) +bx+c=0, bet...

    Text Solution

    |

  11. If the roots of the equation x^(2)+2ax+b=0 are real and distinct and t...

    Text Solution

    |

  12. The middle point of the interval in which x^(2)+2 (sqrt(x))^(2)-3 le 0...

    Text Solution

    |

  13. If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2...

    Text Solution

    |

  14. The inequality (x^(2)-|x|-2)/(2|x|-x^(2)-2) gt 2 holds only if.

    Text Solution

    |

  15. If x is real, then (x^(2)-2x+4)/(x^(2)+2x+4) takes values in the inter...

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is :

    Text Solution

    |

  17. For real x , the function (x-a)(x-b)//(x-c) will assume all real value...

    Text Solution

    |

  18. If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

    Text Solution

    |

  19. The values of p for which the expression (px^(2)+3x-4)/(p+3x-4x^(2)) c...

    Text Solution

    |

  20. If P (x) is a polynomial of degree less than or equal to 2 and S is th...

    Text Solution

    |