Home
Class 12
MATHS
If y= tan x cot 3x, x in R, then...

If `y= tan x cot 3x, x in R`, then

A

`(1)/(3) lt y lt 1`

B

`y lt (1)/(3)" or "y gt 3`

C

`(1)/(3) le y le 1`

D

`(1)/(3) le y le 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = \tan x \cdot \cot 3x \) and \( x \in \mathbb{R} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \tan x \cdot \cot 3x \] Using the identity \( \cot \theta = \frac{1}{\tan \theta} \), we can rewrite \( \cot 3x \) as: \[ y = \tan x \cdot \frac{1}{\tan 3x} = \frac{\tan x}{\tan 3x} \] ### Step 2: Use the identity for \( \tan 3x \) We can use the triple angle formula for tangent: \[ \tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} \] Let \( k = \tan x \). Then we have: \[ \tan 3x = \frac{3k - k^3}{1 - 3k^2} \] Substituting this back into our expression for \( y \): \[ y = \frac{k}{\frac{3k - k^3}{1 - 3k^2}} = \frac{k(1 - 3k^2)}{3k - k^3} \] ### Step 3: Simplify the expression We simplify \( y \): \[ y = \frac{k(1 - 3k^2)}{3k - k^3} = \frac{k - 3k^3}{3k - k^3} \] This can be rewritten as: \[ y = \frac{k(1 - 3k^2)}{k(3 - k^2)} \quad \text{(for } k \neq 0\text{)} \] Thus, \[ y = \frac{1 - 3k^2}{3 - k^2} \] ### Step 4: Analyze the range of \( y \) To find the range of \( y \), we need to analyze the expression: \[ y = \frac{1 - 3k^2}{3 - k^2} \] We will find the values of \( y \) for different values of \( k \). ### Step 5: Find critical points To find the critical points, we can set the derivative of \( y \) with respect to \( k \) to zero. However, we can also analyze the limits: - As \( k \to 0 \), \( y \to \frac{1}{3} \). - As \( k^2 \to 3 \), \( y \to \infty \). - As \( k^2 \to \infty \), \( y \to -3 \). ### Step 6: Determine the intervals We can find the intervals where \( y \) is positive or negative: 1. Set \( 1 - 3k^2 \geq 0 \) which gives \( k^2 \leq \frac{1}{3} \) or \( k \in \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right] \). 2. Set \( 3 - k^2 > 0 \) which gives \( k^2 < 3 \) or \( k \in (-\sqrt{3}, \sqrt{3}) \). ### Step 7: Combine intervals The combined valid interval for \( k \) is: \[ k \in \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right] \cap (-\sqrt{3}, \sqrt{3}) = \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right] \] ### Step 8: Determine the range of \( y \) From the analysis, we see that: - \( y \) can take values from \( -\infty \) to \( \frac{1}{3} \) and from \( 3 \) to \( +\infty \). Thus, the range of \( y \) is: \[ y \in (-\infty, \frac{1}{3}] \cup [3, +\infty) \] ### Final Answer The final range of \( y \) is: \[ y \in (-\infty, \frac{1}{3}] \cup [3, +\infty) \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 3 (Fill In The Blanks)|2 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If y=tan x cot3x,x in R, then

If y = (tan x)^(cot x) " then " (dy)/(dx)= ?

tan x+3 cot x-5 secx

If tan 3x = cot (30^@+2x) , then what is the value of x? यदि tan 3x = cot (30^@+2x) है, तो x का मान क्या है?

If y=(tan x + cot x)/(tan x - cot x) , then (dy)/(dx)=

cot x+ tan x=

If tan5x=cot3x then x=(n in z)

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Problem Set - 4
  1. If x^(2)+2ax+10 -3a gt 0 for all x in R, then

    Text Solution

    |

  2. The expression y=ax^(2)+bx+c has always the same sign as of a if

    Text Solution

    |

  3. If the graph of the function y=16x^(2)+8(a+5) x-7a-5 is strictly above...

    Text Solution

    |

  4. Let f(x) be a quadratic expression possible for all real x. If g(x)=...

    Text Solution

    |

  5. If x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-2 lamda -7) gt 0 for all real ...

    Text Solution

    |

  6. If the equation x^(3 )-3x+a=0 has distinct roots between 0 and 1, then...

    Text Solution

    |

  7. If c gt0 and 4a+clt2b then ax^(2)-bc+c=0 has a root in the interval

    Text Solution

    |

  8. If y= tan x cot 3x, x in R, then

    Text Solution

    |

  9. If a lt b lt c lt d, then the quadratic equation (x-a) (x-c) +2(x-b) (...

    Text Solution

    |

  10. Let a,b,c in R and a ne 0. If alpha is a root a^(2) x^(2) +bx+c=0, bet...

    Text Solution

    |

  11. If the roots of the equation x^(2)+2ax+b=0 are real and distinct and t...

    Text Solution

    |

  12. The middle point of the interval in which x^(2)+2 (sqrt(x))^(2)-3 le 0...

    Text Solution

    |

  13. If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2...

    Text Solution

    |

  14. The inequality (x^(2)-|x|-2)/(2|x|-x^(2)-2) gt 2 holds only if.

    Text Solution

    |

  15. If x is real, then (x^(2)-2x+4)/(x^(2)+2x+4) takes values in the inter...

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is :

    Text Solution

    |

  17. For real x , the function (x-a)(x-b)//(x-c) will assume all real value...

    Text Solution

    |

  18. If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

    Text Solution

    |

  19. The values of p for which the expression (px^(2)+3x-4)/(p+3x-4x^(2)) c...

    Text Solution

    |

  20. If P (x) is a polynomial of degree less than or equal to 2 and S is th...

    Text Solution

    |