Home
Class 12
MATHS
The inequality (x^(2)-|x|-2)/(2|x|-x^(2)...

The inequality `(x^(2)-|x|-2)/(2|x|-x^(2)-2) gt 2` holds only if.

A

`-1 lt x lt -(2)/(3)` only

B

only for `(2)/(3) lt x lt 1`

C

`-1 lt x lt 1`

D

`-1 lt x lt -(2)/(3)" or "(2)/(3) lt x lt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{x^2 - |x| - 2}{2|x| - x^2 - 2} > 2\), we will follow a systematic approach: ### Step 1: Rearranging the Inequality Start by moving the \(2\) from the right-hand side to the left-hand side: \[ \frac{x^2 - |x| - 2}{2|x| - x^2 - 2} - 2 > 0 \] ### Step 2: Finding a Common Denominator We can rewrite the left-hand side by finding a common denominator: \[ \frac{x^2 - |x| - 2 - 2(2|x| - x^2 - 2)}{2|x| - x^2 - 2} > 0 \] ### Step 3: Simplifying the Numerator Now simplify the numerator: \[ x^2 - |x| - 2 - 4|x| + 2x^2 + 4 = 3x^2 - 5|x| + 2 \] So the inequality becomes: \[ \frac{3x^2 - 5|x| + 2}{2|x| - x^2 - 2} > 0 \] ### Step 4: Analyzing the Denominator Next, we will analyze the denominator: \[ 2|x| - x^2 - 2 \] ### Step 5: Finding Critical Points To find the critical points, we need to set the numerator and denominator to zero. 1. **Numerator**: \(3x^2 - 5|x| + 2 = 0\) 2. **Denominator**: \(2|x| - x^2 - 2 = 0\) ### Step 6: Solving the Numerator Let \(y = |x|\). Then we solve: \[ 3y^2 - 5y + 2 = 0 \] Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3} = \frac{5 \pm 1}{6} \] This gives us: \[ y = 1 \quad \text{and} \quad y = \frac{2}{3} \] Thus, \( |x| = 1 \) or \( |x| = \frac{2}{3} \). ### Step 7: Solving the Denominator Now solve for the denominator: \[ 2|x| - x^2 - 2 = 0 \] Rearranging gives us: \[ x^2 - 2|x| + 2 = 0 \] Using the quadratic formula again: \[ |x| = 1 \pm i \] Since this has no real solutions, we focus on the critical points from the numerator. ### Step 8: Testing Intervals Now we will test the intervals defined by the critical points \( -1, -\frac{2}{3}, \frac{2}{3}, 1 \): 1. **Interval \( (-\infty, -1) \)**: Choose \( x = -2 \) 2. **Interval \( (-1, -\frac{2}{3}) \)**: Choose \( x = -0.8 \) 3. **Interval \( (-\frac{2}{3}, \frac{2}{3}) \)**: Choose \( x = 0 \) 4. **Interval \( (\frac{2}{3}, 1) \)**: Choose \( x = 0.8 \) 5. **Interval \( (1, \infty) \)**: Choose \( x = 2 \) ### Step 9: Conclusion After testing these intervals, we find that the inequality holds true in the intervals: \[ (-1, -\frac{2}{3}) \quad \text{and} \quad (\frac{2}{3}, 1) \] Thus, the solution to the inequality is: \[ x \in (-1, -\frac{2}{3}) \cup (\frac{2}{3}, 1) \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 3 (Fill In The Blanks)|2 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Linear inequalities (|x-2|-1)/(|x-2|-2)<=0

Solve the following inequalities: (x^(2)-3x-18)/(13x-x^(2)-42)gt0

Solve the inequality (x^(2)+2x+2)^(x)>=1

The comlete set of values of m for which the inequality (x ^(2) -mx-2)/( x ^(2) + mx +4)gt-1 is satisfied aa x in R, is :

The inequality x^(2)-3x gt tan^(-1) x is ture in

Find the set of all possible real value of a such that the inequality (x-(a-1))(x-(a^(2)+2))<0 holds for all x in(-1,3)

Solve the inequality: 4/(|x-2|)gt5

Solve the inequality (x^(2)-3x+2)(x^(3)-3x^(2))(4-x^(2))>=0

Solve the inequality |x-1|+|2-x|gt3+x.

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Problem Set - 4
  1. If x^(2)+2ax+10 -3a gt 0 for all x in R, then

    Text Solution

    |

  2. The expression y=ax^(2)+bx+c has always the same sign as of a if

    Text Solution

    |

  3. If the graph of the function y=16x^(2)+8(a+5) x-7a-5 is strictly above...

    Text Solution

    |

  4. Let f(x) be a quadratic expression possible for all real x. If g(x)=...

    Text Solution

    |

  5. If x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-2 lamda -7) gt 0 for all real ...

    Text Solution

    |

  6. If the equation x^(3 )-3x+a=0 has distinct roots between 0 and 1, then...

    Text Solution

    |

  7. If c gt0 and 4a+clt2b then ax^(2)-bc+c=0 has a root in the interval

    Text Solution

    |

  8. If y= tan x cot 3x, x in R, then

    Text Solution

    |

  9. If a lt b lt c lt d, then the quadratic equation (x-a) (x-c) +2(x-b) (...

    Text Solution

    |

  10. Let a,b,c in R and a ne 0. If alpha is a root a^(2) x^(2) +bx+c=0, bet...

    Text Solution

    |

  11. If the roots of the equation x^(2)+2ax+b=0 are real and distinct and t...

    Text Solution

    |

  12. The middle point of the interval in which x^(2)+2 (sqrt(x))^(2)-3 le 0...

    Text Solution

    |

  13. If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2...

    Text Solution

    |

  14. The inequality (x^(2)-|x|-2)/(2|x|-x^(2)-2) gt 2 holds only if.

    Text Solution

    |

  15. If x is real, then (x^(2)-2x+4)/(x^(2)+2x+4) takes values in the inter...

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is :

    Text Solution

    |

  17. For real x , the function (x-a)(x-b)//(x-c) will assume all real value...

    Text Solution

    |

  18. If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

    Text Solution

    |

  19. The values of p for which the expression (px^(2)+3x-4)/(p+3x-4x^(2)) c...

    Text Solution

    |

  20. If P (x) is a polynomial of degree less than or equal to 2 and S is th...

    Text Solution

    |