Home
Class 12
MATHS
If x is real, then (x^(2)-2x+4)/(x^(2)+2...

If x is real, then `(x^(2)-2x+4)/(x^(2)+2x+4)` takes values in the interval

A

`[1/3,3]`

B

(1/3,3)

C

(3,3)

D

(-1/3,3)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of determining the interval in which the function \( f(x) = \frac{x^2 - 2x + 4}{x^2 + 2x + 4} \) takes values when \( x \) is real, we can follow these steps: ### Step 1: Set up the equation Let \( y = f(x) = \frac{x^2 - 2x + 4}{x^2 + 2x + 4} \). ### Step 2: Multiply both sides by the denominator Multiply both sides by \( x^2 + 2x + 4 \) (which is always positive for real \( x \)): \[ y(x^2 + 2x + 4) = x^2 - 2x + 4 \] ### Step 3: Rearrange the equation Rearranging gives: \[ yx^2 + 2yx + 4y - x^2 + 2x - 4 = 0 \] Combine like terms: \[ (1 - y)x^2 + (2y + 2)x + (4y - 4) = 0 \] ### Step 4: Identify coefficients The coefficients are: - \( a = 1 - y \) - \( b = 2y + 2 \) - \( c = 4y - 4 \) ### Step 5: Apply the discriminant condition For \( x \) to be real, the discriminant \( D \) must be non-negative: \[ D = b^2 - 4ac \geq 0 \] Substituting the coefficients: \[ (2y + 2)^2 - 4(1 - y)(4y - 4) \geq 0 \] ### Step 6: Simplify the discriminant Calculating \( D \): \[ (2y + 2)^2 = 4y^2 + 8y + 4 \] \[ 4(1 - y)(4y - 4) = 16y - 16 - 16y^2 + 16y = -16y^2 + 32y - 16 \] Thus, we have: \[ 4y^2 + 8y + 4 + 16y^2 - 32y + 16 \geq 0 \] Combining like terms: \[ 20y^2 - 24y + 20 \geq 0 \] ### Step 7: Factor the quadratic Dividing the entire inequality by 4: \[ 5y^2 - 6y + 5 \geq 0 \] Now we can find the roots using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 5 \cdot 5}}{2 \cdot 5} \] Calculating the discriminant: \[ 36 - 100 = -64 \] Since the discriminant is negative, the quadratic does not cross the x-axis and is always positive. ### Step 8: Determine the interval Since \( 5y^2 - 6y + 5 \geq 0 \) for all \( y \), we need to check the values of \( y \) that satisfy the original function. ### Step 9: Find the maximum and minimum values of \( f(x) \) To find the range of \( f(x) \), we can analyze the limits as \( x \to \infty \) and \( x \to -\infty \): - As \( x \to \infty \), \( f(x) \to 1 \). - As \( x \to -\infty \), \( f(x) \to 1 \). ### Step 10: Check specific values To find specific bounds, we can check the function at some values: - At \( x = 0 \): \( f(0) = 1 \). - At \( x = 1 \): \( f(1) = \frac{3}{5} \). - At \( x = -1 \): \( f(-1) = \frac{7}{5} \). ### Conclusion The function \( f(x) \) takes values in the interval \(\left[\frac{1}{3}, 3\right]\).
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 3 (Fill In The Blanks)|2 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If x is real then the value of (x^(2)-3x+4)/(x^(2)+3x+4) lies in the interval

If x is real,the expression (x+2)/(2x^(2)+3x+6) takes all value in the interval

If x is real then (x^(2)-x+c)/(x^(2)+x+2c) can take all real values if

If x is real and (x^(2)+2x+c)/(x^(2)+4x+3c) can take all real values,of then show that 0<=c<=1

If x is real and 5x^(2)+2x+9>3x^(2)+10x+7, then x lies in the interval

If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

If x is real then the values of (x^(2) + 34 x - 71)/(x^(2) + 2x - 7) does not lie in the interval

if for all real value of x,(4x^(2)+1)/(64x^(2)-96x.sin a+5)<(1)/(32) ,then a lies in the interval

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Problem Set - 4
  1. If x^(2)+2ax+10 -3a gt 0 for all x in R, then

    Text Solution

    |

  2. The expression y=ax^(2)+bx+c has always the same sign as of a if

    Text Solution

    |

  3. If the graph of the function y=16x^(2)+8(a+5) x-7a-5 is strictly above...

    Text Solution

    |

  4. Let f(x) be a quadratic expression possible for all real x. If g(x)=...

    Text Solution

    |

  5. If x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-2 lamda -7) gt 0 for all real ...

    Text Solution

    |

  6. If the equation x^(3 )-3x+a=0 has distinct roots between 0 and 1, then...

    Text Solution

    |

  7. If c gt0 and 4a+clt2b then ax^(2)-bc+c=0 has a root in the interval

    Text Solution

    |

  8. If y= tan x cot 3x, x in R, then

    Text Solution

    |

  9. If a lt b lt c lt d, then the quadratic equation (x-a) (x-c) +2(x-b) (...

    Text Solution

    |

  10. Let a,b,c in R and a ne 0. If alpha is a root a^(2) x^(2) +bx+c=0, bet...

    Text Solution

    |

  11. If the roots of the equation x^(2)+2ax+b=0 are real and distinct and t...

    Text Solution

    |

  12. The middle point of the interval in which x^(2)+2 (sqrt(x))^(2)-3 le 0...

    Text Solution

    |

  13. If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2...

    Text Solution

    |

  14. The inequality (x^(2)-|x|-2)/(2|x|-x^(2)-2) gt 2 holds only if.

    Text Solution

    |

  15. If x is real, then (x^(2)-2x+4)/(x^(2)+2x+4) takes values in the inter...

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is :

    Text Solution

    |

  17. For real x , the function (x-a)(x-b)//(x-c) will assume all real value...

    Text Solution

    |

  18. If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

    Text Solution

    |

  19. The values of p for which the expression (px^(2)+3x-4)/(p+3x-4x^(2)) c...

    Text Solution

    |

  20. If P (x) is a polynomial of degree less than or equal to 2 and S is th...

    Text Solution

    |