Home
Class 12
MATHS
If x is real, the maximum value of (3x^(...

If x is real, the maximum value of `(3x^(2)+9x+17)/(3x^(2)+9x+7)` is :

A

41

B

1

C

`17//7`

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \[ y = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}, \] we will follow these steps: ### Step 1: Set up the equation We start by rewriting the equation as follows: \[ y(3x^2 + 9x + 7) = 3x^2 + 9x + 17. \] ### Step 2: Rearranging the equation Rearranging gives us: \[ 3yx^2 + 9yx + 7y - 3x^2 - 9x - 17 = 0. \] ### Step 3: Combine like terms Now, we can combine the terms: \[ (3y - 3)x^2 + (9y - 9)x + (7y - 17) = 0. \] ### Step 4: Factor out common terms Factoring out common terms gives us: \[ 3(y - 1)x^2 + 9(y - 1)x + (7y - 17) = 0. \] ### Step 5: Identify coefficients for the quadratic equation From this, we can identify \(a = 3(y - 1)\), \(b = 9(y - 1)\), and \(c = 7y - 17\). ### Step 6: Use the discriminant condition For \(x\) to have real values, the discriminant must be non-negative: \[ D = b^2 - 4ac \geq 0. \] Substituting in our values: \[ (9(y - 1))^2 - 4(3(y - 1))(7y - 17) \geq 0. \] ### Step 7: Simplify the discriminant Calculating the discriminant: \[ 81(y - 1)^2 - 12(y - 1)(7y - 17) \geq 0. \] ### Step 8: Factor the discriminant Factoring out \((y - 1)\): \[ (y - 1)(81(y - 1) - 12(7y - 17)) \geq 0. \] ### Step 9: Expand and simplify Expanding gives: \[ 81(y - 1) - 84y + 204 \geq 0. \] This simplifies to: \[ -3y + 123 \geq 0 \quad \Rightarrow \quad 3y \leq 123 \quad \Rightarrow \quad y \leq 41. \] ### Step 10: Determine the interval for \(y\) Since \(y - 1 \geq 0\) implies \(y \geq 1\), we have: \[ 1 \leq y \leq 41. \] ### Step 11: Conclusion The maximum value of \(y\) is therefore: \[ \boxed{41}. \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 3 (Fill In The Blanks)|2 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Maximum value of (2+12x-3x^(2))/(2x^(2) - 8x + 9) is "______" .

Maximum value of f(x) =2x^(3)-9x^(2)+12x-2 is

The value of (3x ^(3) + 9x ^(2) + 27x)div 3x is

Maximum value of f(x)=x^(3)-9x^(2)+24x-15 is

Maximum value of f(x)=2x^(3)-9x^(2)+24x-15 is

If x is real, the maximum and minimum values of expression (x^(2)+14x+9)/(x^(2)+2x+3) will be

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

The maximum slope of curve y =-x^(3)+3x^(2)+9x-27 is

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Problem Set - 4
  1. If x^(2)+2ax+10 -3a gt 0 for all x in R, then

    Text Solution

    |

  2. The expression y=ax^(2)+bx+c has always the same sign as of a if

    Text Solution

    |

  3. If the graph of the function y=16x^(2)+8(a+5) x-7a-5 is strictly above...

    Text Solution

    |

  4. Let f(x) be a quadratic expression possible for all real x. If g(x)=...

    Text Solution

    |

  5. If x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-2 lamda -7) gt 0 for all real ...

    Text Solution

    |

  6. If the equation x^(3 )-3x+a=0 has distinct roots between 0 and 1, then...

    Text Solution

    |

  7. If c gt0 and 4a+clt2b then ax^(2)-bc+c=0 has a root in the interval

    Text Solution

    |

  8. If y= tan x cot 3x, x in R, then

    Text Solution

    |

  9. If a lt b lt c lt d, then the quadratic equation (x-a) (x-c) +2(x-b) (...

    Text Solution

    |

  10. Let a,b,c in R and a ne 0. If alpha is a root a^(2) x^(2) +bx+c=0, bet...

    Text Solution

    |

  11. If the roots of the equation x^(2)+2ax+b=0 are real and distinct and t...

    Text Solution

    |

  12. The middle point of the interval in which x^(2)+2 (sqrt(x))^(2)-3 le 0...

    Text Solution

    |

  13. If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2...

    Text Solution

    |

  14. The inequality (x^(2)-|x|-2)/(2|x|-x^(2)-2) gt 2 holds only if.

    Text Solution

    |

  15. If x is real, then (x^(2)-2x+4)/(x^(2)+2x+4) takes values in the inter...

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is :

    Text Solution

    |

  17. For real x , the function (x-a)(x-b)//(x-c) will assume all real value...

    Text Solution

    |

  18. If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

    Text Solution

    |

  19. The values of p for which the expression (px^(2)+3x-4)/(p+3x-4x^(2)) c...

    Text Solution

    |

  20. If P (x) is a polynomial of degree less than or equal to 2 and S is th...

    Text Solution

    |