Home
Class 12
MATHS
If P (x) is a polynomial of degree less ...

If P (x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that `P (0) =0, P (1) =1, and P'(x) gt 0 AA x in [0.1],` then

A

`S= phi`

B

`S=ax +(1-a) x^(2) AA a in (0,oo)`

C

`S= ax + (1-a) x^(2) AA a in R`

D

`S= ax + (1-a) x^(2) AA a in (0,2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 3 (Fill In The Blanks)|2 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If P (x) is polynomial of degree 2 and P(3)=0,P'(0)=1,P''(2)=2," then "p(x)=

The second degree polynomial satisfying f(x),f(0)=0,f(1)=1,f'(x)>0AA x in(0,1)

The second degree polynomial f(x), satisfying f(0)=o, f(1)=1,f'(x)gt0AAx in (0,1)

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. The factor of the polynomial x^(3)+3x^(2)+4x+12 is

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. The remainder when the polynomial P(x) =x^(4)-3x^(2) +2x+1 is divided by x-1 is

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. THe polynomials P(x) =kx^(3)+3x^(2)-3 and Q(x)=2x^(3) -5x+k, when divided by (x-4) leave the same remainder. Then the value of k is

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. The number of real roots of the equation, (x-1)^(2)+(x-2)^(2)+(x-3)^(2)=0 is

If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2) =P(0)=P (2) =2 find the maximum vaue of P (x).

ML KHANNA-THEORY OF QUADRATIC EQUATIONS -Problem Set - 4
  1. If x^(2)+2ax+10 -3a gt 0 for all x in R, then

    Text Solution

    |

  2. The expression y=ax^(2)+bx+c has always the same sign as of a if

    Text Solution

    |

  3. If the graph of the function y=16x^(2)+8(a+5) x-7a-5 is strictly above...

    Text Solution

    |

  4. Let f(x) be a quadratic expression possible for all real x. If g(x)=...

    Text Solution

    |

  5. If x^(2)-2 (4 lamda-1) x+ (15 lamda^(2)-2 lamda -7) gt 0 for all real ...

    Text Solution

    |

  6. If the equation x^(3 )-3x+a=0 has distinct roots between 0 and 1, then...

    Text Solution

    |

  7. If c gt0 and 4a+clt2b then ax^(2)-bc+c=0 has a root in the interval

    Text Solution

    |

  8. If y= tan x cot 3x, x in R, then

    Text Solution

    |

  9. If a lt b lt c lt d, then the quadratic equation (x-a) (x-c) +2(x-b) (...

    Text Solution

    |

  10. Let a,b,c in R and a ne 0. If alpha is a root a^(2) x^(2) +bx+c=0, bet...

    Text Solution

    |

  11. If the roots of the equation x^(2)+2ax+b=0 are real and distinct and t...

    Text Solution

    |

  12. The middle point of the interval in which x^(2)+2 (sqrt(x))^(2)-3 le 0...

    Text Solution

    |

  13. If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2...

    Text Solution

    |

  14. The inequality (x^(2)-|x|-2)/(2|x|-x^(2)-2) gt 2 holds only if.

    Text Solution

    |

  15. If x is real, then (x^(2)-2x+4)/(x^(2)+2x+4) takes values in the inter...

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is :

    Text Solution

    |

  17. For real x , the function (x-a)(x-b)//(x-c) will assume all real value...

    Text Solution

    |

  18. If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

    Text Solution

    |

  19. The values of p for which the expression (px^(2)+3x-4)/(p+3x-4x^(2)) c...

    Text Solution

    |

  20. If P (x) is a polynomial of degree less than or equal to 2 and S is th...

    Text Solution

    |