Home
Class 12
MATHS
If sqrt(((x)/(1-x)))+sqrt(((1-x)/(x)))=2...

If `sqrt(((x)/(1-x)))+sqrt(((1-x)/(x)))=2(1)/(6)`, then x is equal to

A

`(3)/(13), (5)/(13)`

B

`(7)/(5), (3)/(5)`

C

`(9)/(13), (4)/(13)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = \frac{13}{6}, \] we will follow these steps: ### Step 1: Simplify the equation Let \( y = \sqrt{\frac{x}{1-x}} \). Then, we have \[ \sqrt{\frac{1-x}{x}} = \frac{1}{y}. \] Substituting this into the equation gives: \[ y + \frac{1}{y} = \frac{13}{6}. \] ### Step 2: Multiply through by \( y \) To eliminate the fraction, multiply both sides by \( y \): \[ y^2 + 1 = \frac{13}{6}y. \] ### Step 3: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ y^2 - \frac{13}{6}y + 1 = 0. \] ### Step 4: Multiply through by 6 To eliminate the fraction, multiply the entire equation by 6: \[ 6y^2 - 13y + 6 = 0. \] ### Step 5: Apply the quadratic formula Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 6, b = -13, c = 6 \): \[ b^2 - 4ac = (-13)^2 - 4 \cdot 6 \cdot 6 = 169 - 144 = 25. \] Thus, \[ y = \frac{13 \pm \sqrt{25}}{12} = \frac{13 \pm 5}{12}. \] ### Step 6: Calculate the two possible values for \( y \) Calculating gives: 1. \( y = \frac{18}{12} = \frac{3}{2} \) 2. \( y = \frac{8}{12} = \frac{2}{3} \) ### Step 7: Solve for \( x \) Recall that \( y = \sqrt{\frac{x}{1-x}} \). We will solve for \( x \) for both values of \( y \). #### For \( y = \frac{3}{2} \): \[ \frac{3}{2} = \sqrt{\frac{x}{1-x}} \implies \left(\frac{3}{2}\right)^2 = \frac{x}{1-x} \implies \frac{9}{4} = \frac{x}{1-x}. \] Cross-multiplying gives: \[ 9(1-x) = 4x \implies 9 - 9x = 4x \implies 9 = 13x \implies x = \frac{9}{13}. \] #### For \( y = \frac{2}{3} \): \[ \frac{2}{3} = \sqrt{\frac{x}{1-x}} \implies \left(\frac{2}{3}\right)^2 = \frac{x}{1-x} \implies \frac{4}{9} = \frac{x}{1-x}. \] Cross-multiplying gives: \[ 4(1-x) = 9x \implies 4 - 4x = 9x \implies 4 = 13x \implies x = \frac{4}{13}. \] ### Final Answer Thus, the possible values for \( x \) are: \[ x = \frac{9}{13} \quad \text{or} \quad x = \frac{4}{13}. \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (Fill In The Blanks)|10 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

sqrt((x)/(1-x))+sqrt((1-x)/(x))=(13)/(6)

sqrt((x)/(1-x))+sqrt((1-x)/(x))=(13)/(6)

Solve for x:sqrt((x)/(1-x))+sqrt((1-x)/(x))=2(1)/(6)

If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to