Home
Class 12
MATHS
x^(2)-xy+y^(2)=7, x^(4)+x^(2)y^(2)+y^(4)...

`x^(2)-xy+y^(2)=7, x^(4)+x^(2)y^(2)+y^(4)=133` then (x,y)=

A

`(2,3)`

B

`(-2,-3)`

C

`(3,2)`

D

`(-3,-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( x^2 - xy + y^2 = 7 \) and \( x^4 + x^2y^2 + y^4 = 133 \), we can follow these steps: ### Step 1: Factor the second equation We start with the second equation: \[ x^4 + x^2y^2 + y^4 = 133 \] This can be factored as: \[ (x^2 - xy + y^2)(x^2 + xy + y^2) = 133 \] ### Step 2: Substitute the first equation into the factorization From the first equation, we know: \[ x^2 - xy + y^2 = 7 \] Substituting this into the factorization gives: \[ 7(x^2 + xy + y^2) = 133 \] ### Step 3: Solve for \( x^2 + xy + y^2 \) Dividing both sides by 7: \[ x^2 + xy + y^2 = \frac{133}{7} = 19 \] ### Step 4: Set up a system of equations Now we have two equations: 1. \( x^2 - xy + y^2 = 7 \) 2. \( x^2 + xy + y^2 = 19 \) ### Step 5: Add the two equations Adding both equations: \[ (x^2 - xy + y^2) + (x^2 + xy + y^2) = 7 + 19 \] This simplifies to: \[ 2x^2 + 2y^2 = 26 \] Dividing by 2: \[ x^2 + y^2 = 13 \] ### Step 6: Subtract the first equation from the second Now, subtract the first equation from the second: \[ (x^2 + xy + y^2) - (x^2 - xy + y^2) = 19 - 7 \] This simplifies to: \[ 2xy = 12 \] Dividing by 2: \[ xy = 6 \] ### Step 7: Solve for \( x^2 \) and \( y^2 \) Now we have: 1. \( x^2 + y^2 = 13 \) 2. \( xy = 6 \) Let \( x^2 = a \) and \( y^2 = b \). Then we have: \[ a + b = 13 \quad \text{(1)} \] \[ ab = 36 \quad \text{(since } (xy)^2 = 6^2 = 36\text{)} \] ### Step 8: Form a quadratic equation Using the equations \( a + b = 13 \) and \( ab = 36 \), we can form the quadratic: \[ t^2 - (a+b)t + ab = 0 \] Substituting the values: \[ t^2 - 13t + 36 = 0 \] ### Step 9: Solve the quadratic equation Using the quadratic formula: \[ t = \frac{13 \pm \sqrt{13^2 - 4 \cdot 36}}{2} \] Calculating the discriminant: \[ 13^2 - 144 = 169 - 144 = 25 \] Thus: \[ t = \frac{13 \pm 5}{2} \] Calculating the roots: \[ t_1 = \frac{18}{2} = 9, \quad t_2 = \frac{8}{2} = 4 \] ### Step 10: Find \( x \) and \( y \) So, we have \( x^2 = 9 \) and \( y^2 = 4 \) (or vice versa): \[ x = 3, y = 2 \quad \text{or} \quad x = -3, y = -2 \] \[ x = 2, y = 3 \quad \text{or} \quad x = -2, y = -3 \] ### Final Solutions Thus, the pairs \( (x, y) \) are: 1. \( (3, 2) \) 2. \( (-3, -2) \) 3. \( (2, 3) \) 4. \( (-2, -3) \)
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (Fill In The Blanks)|10 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If x^(2) - xy + y^(2) =2 and x^(4) + x^(2)y^(2) + y^(4) = 6 , then the value of (x^(2) + xy + y^(2) is :

If x^(4)+7x^(2)y^(2)+9y^(4)=24xy^(3) then (dy)/(dx)=

Show that (x^(2)+y^(2))^(4)=(x^(4)-6x^(2)y^(2)+y^(4))^(2)+(4x^(3)y-4xy^(3))^(2)

If x^(4)+x^(2)y^(2)+y^(4)=133 and x^(2)-xy+y^(2)=7, then what is the value of xy ?

If x^(4) +x^(2)y^(2)+y^(4)=21 , and x^(2)+xy+y^(2)=3 then what is the value of 4xy?

If x^(4) + x^(2) y^(2) + y^(4) = 91 and x^(2) - xy + y^(2) = 13 , then what is the value of | x-y|?