Home
Class 12
MATHS
(x+y)^(2//3) +2(x-y)^(2//3) =3(x^(2)-y^(...

`(x+y)^(2//3) +2(x-y)^(2//3) =3(x^(2)-y^(2))^(1//3), 3x-2y =13`

A

`((13)/(3),0)`

B

(9,7)

C

`(0,-(13)/(2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations: 1. \((x+y)^{\frac{2}{3}} + 2(x-y)^{\frac{2}{3}} = 3(x^2 - y^2)^{\frac{1}{3}}\) 2. \(3x - 2y = 13\) We will follow these steps: ### Step 1: Rewrite the first equation We can rewrite the first equation using the identity \(x^2 - y^2 = (x+y)(x-y)\): \[ (x+y)^{\frac{2}{3}} + 2(x-y)^{\frac{2}{3}} = 3((x+y)(x-y))^{\frac{1}{3}} \] ### Step 2: Introduce a substitution Let: \[ t = \frac{x+y}{x-y} \] Then we can express \(x+y\) and \(x-y\) in terms of \(t\): \[ x+y = t(x-y) \] ### Step 3: Substitute into the equation Substituting \(x+y\) and \(x-y\) into the equation gives: \[ (t(x-y))^{\frac{2}{3}} + 2(x-y)^{\frac{2}{3}} = 3((t(x-y))(x-y))^{\frac{1}{3}} \] This simplifies to: \[ t^{\frac{2}{3}}(x-y)^{\frac{2}{3}} + 2(x-y)^{\frac{2}{3}} = 3(t(x-y)^{2})^{\frac{1}{3}} \] ### Step 4: Factor out \((x-y)^{\frac{2}{3}}\) Factoring out \((x-y)^{\frac{2}{3}}\): \[ (x-y)^{\frac{2}{3}}(t^{\frac{2}{3}} + 2) = 3(t^{\frac{1}{3}}(x-y)) \] ### Step 5: Rearranging the equation Rearranging gives: \[ (x-y)^{\frac{2}{3}}(t^{\frac{2}{3}} + 2) - 3t^{\frac{1}{3}}(x-y) = 0 \] ### Step 6: Solve for \(x-y\) This can be solved by setting \((x-y)^{\frac{2}{3}} = 0\) or solving the quadratic in \(t\): 1. If \((x-y)^{\frac{2}{3}} = 0\), then \(x = y\). 2. Otherwise, we can solve for \(t\). ### Step 7: Solve the second equation Using the second equation \(3x - 2y = 13\), we can substitute \(y = 0\) (from \(x = y\)): \[ 3x - 0 = 13 \implies x = \frac{13}{3}, y = 0 \] ### Step 8: Solve for the other case Now consider \(t = 2\): \[ \frac{x+y}{x-y} = 2 \implies x+y = 2(x-y) \] This gives: \[ x+y = 2x - 2y \implies 3y = x \implies x = 3y \] ### Step 9: Substitute into the second equation Substituting \(x = 3y\) into \(3x - 2y = 13\): \[ 3(3y) - 2y = 13 \implies 9y - 2y = 13 \implies 7y = 13 \implies y = \frac{13}{7} \] Then substituting back to find \(x\): \[ x = 3y = 3 \cdot \frac{13}{7} = \frac{39}{7} \] ### Final Solutions The solutions are: 1. \((x, y) = \left(\frac{13}{3}, 0\right)\) 2. \((x, y) = \left(\frac{39}{7}, \frac{13}{7}\right)\)
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (Fill In The Blanks)|10 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

((x +y)^(3) + (x-y)^(3))/(2) -y (3x^(2) + y^(2)) = ______

x^(2)dx-y^(2)dy+xdx=dy-ydy-dx A) 2(x^(3)-y^(3))-3(x^(2)+y^(2))+6(x-y)=c B) 2(x^(3)-y^(3))+3(x^(2)-y^(2))+6(x+y)=c C) 2(x^(3)-y^(3))-3(x^(2)+y^(2))-6(x-y)=c D) 2(x^(3)-y^(3))+3(x^(2)+y^(2))+6(x-y)=c

(x+y)^(3)-(x-y)^(3) can be factorized as 2y(3x^(2)+y^(2)) (b) 2x(3x^(2)+y^(2))2y(3y^(2)+x^(2)) (d) 2x(x^(2)+3y^(2))

Solve :(x+y)/(x-y)=(3)/(2),3x-2y=13

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

(x)/(2)+(2y)/(3)=-1 And x-(y)/(3)

if (x_ (1), y_ (1)), (x_ (2), y_ (2)), (x_ (3), y_ (3)) are vertices equilateral triangle such that (x_ (1) -2) ^ (2) + (y_ (1) -3) ^ (2) = (x_ (2) -2) ^ (2) + (y_ (2) -3) ^ (2) = (x_ (3) - 2) ^ (2) + (y_ (3) -3) ^ (2) then x_ (1) + x_ (2) + x_ (3) +2 (y_ (1) + y_ (2) + y_ (3) ))

Find the value of (x+y) ,if (x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)