Home
Class 12
MATHS
(x+y)^(2)-z^(2)=-9, (y+z)^(2)-x^(2)=15, ...

`(x+y)^(2)-z^(2)=-9, (y+z)^(2)-x^(2)=15, (z+x)^(2)-y^(2)=3`

A

(2,3,4)

B

(1,-1,-3)

C

`-1,1,3`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \((x+y)^2 - z^2 = -9\) 2. \((y+z)^2 - x^2 = 15\) 3. \((z+x)^2 - y^2 = 3\) we will follow these steps: ### Step 1: Expand the equations Start by expanding each equation using the identity \((a+b)^2 = a^2 + b^2 + 2ab\). 1. **First equation**: \[ (x+y)^2 - z^2 = -9 \implies x^2 + y^2 + 2xy - z^2 = -9 \] Rearranging gives: \[ x^2 + y^2 + 2xy - z^2 + 9 = 0 \quad \text{(Equation 1)} \] 2. **Second equation**: \[ (y+z)^2 - x^2 = 15 \implies y^2 + z^2 + 2yz - x^2 = 15 \] Rearranging gives: \[ -x^2 + y^2 + z^2 + 2yz - 15 = 0 \quad \text{(Equation 2)} \] 3. **Third equation**: \[ (z+x)^2 - y^2 = 3 \implies z^2 + x^2 + 2zx - y^2 = 3 \] Rearranging gives: \[ -y^2 + z^2 + x^2 + 2zx - 3 = 0 \quad \text{(Equation 3)} \] ### Step 2: Add Equations Now, we will add the first and second equations: \[ (x^2 + y^2 + 2xy - z^2 + 9) + (-x^2 + y^2 + z^2 + 2yz - 15) = 0 \] This simplifies to: \[ 2y^2 + 2xy + 2yz - 6 = 0 \] Dividing by 2 gives: \[ y^2 + xy + yz - 3 = 0 \quad \text{(Equation 4)} \] Next, add the first and third equations: \[ (x^2 + y^2 + 2xy - z^2 + 9) + (-y^2 + z^2 + x^2 + 2zx - 3) = 0 \] This simplifies to: \[ 2x^2 + 2xy + 2zx + 6 = 0 \] Dividing by 2 gives: \[ x^2 + xy + zx + 3 = 0 \quad \text{(Equation 5)} \] ### Step 3: Solve for variables Now, we have two new equations (4 and 5). We can express \(y\) in terms of \(x\) and \(z\) using these equations. From Equation 4: \[ y^2 + xy + yz = 3 \implies y(y + x + z) = 3 \] From Equation 5: \[ x^2 + xy + zx = -3 \implies x^2 + yx + zx = -3 \] ### Step 4: Substitute and Solve Assuming \(y = -x\) (from the symmetry of the equations), substitute \(y\) into the equations: 1. Substitute \(y = -x\) into Equation 1: \[ (x - x)^2 - z^2 = -9 \implies -z^2 = -9 \implies z^2 = 9 \implies z = \pm 3 \] 2. Substitute \(z = 3\) back into Equation 1: \[ (x - x)^2 - 3^2 = -9 \implies -9 = -9 \quad \text{(True)} \] 3. Substitute \(z = -3\) back into Equation 1: \[ (x - x)^2 - (-3)^2 = -9 \implies -9 = -9 \quad \text{(True)} \] Thus, we have two cases for \(z\): \(z = 3\) or \(z = -3\). For both cases, we find \(y = -x\). ### Final Values The solutions for the variables are: - For \(z = 3\), \(y = -x\) - For \(z = -3\), \(y = -x\)
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (True And False)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (Fill In The Blanks)|10 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 4 (Fill In The Blanks)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))

x(y^(2)-z^(2))+y(z^(2)-x^(2))+z(x^(2)-y^(2)) is divisible by

Find ((x^(2)-y^(2))^(3) + (y^(2) -z^(2))^(3)+ (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

Add : x y ^(2) z ^(2)+ 3x ^(2) y ^(2) z - 4x ^(2)yz ^(2), - 9x ^(2) y ^(2) z + 3x y ^(2) z ^(2) + x ^(2) yz ^(2)